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Where trustworthy AI
and food safety
come together
to strengthen

Europe’s resilience

This discussion paper was developed within the HORIZON EFRA project, which advances 
extreme data discovery, aggregation, and analytics to strengthen food‑risk prevention and 
support resilient, trustworthy, and data‑driven decision making across the food system. The 
project is coordinated by Dr. Babis Thanopoulos, Head of Innovation at Agroknow
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Foreword

Let us begin from a food-system perspective. 
On a winter morning in March 2023, a batch of 
baby-leaf spinach left a greenhouse near The 
Hague, crossed two borders, and was expected 
to reach the Riviera within 30 hours. Forty-five 
minutes before unloading, an alert appeared 
on the logistics dashboard: a temperature 
excursion of 2.8 °C had occurred during transit 
through southern France, leading to accelerated 
bacterial proliferation and an estimated 18 % 
increase in the likelihood of Listeria growth. 
Within minutes, the shipment was diverted to a 
processor for blanching rather than entering the 
fresh-produce supply chain. The incident never 
reached consumers or the media. This near-miss 
illustrates a structural shift in food safety: artificial 
intelligence (AI) is increasingly enabling risks that 
once triggered recalls to be anticipated, detected, 
and mitigated in real time.

This discussion paper, AI for Resilient Food 
Systems and Risk Intelligence, brings together 
insights from Horizon Europe projects—including 
EFRA (Extreme Food Risk Analytics), HACID 
(Hybrid Human–Artificial Collective Intelligence 
in Open-Ended Decision Making), OASEES (Open 
Autonomous Programmable Cloud Applications 
and Smart Edge Sensors), and PLIADES (AI-
Enabled Data Lifecycle Optimisation and Data 
Spaces Integration) alongside contributions from 
leading research organisations. Together, they 
examine how AI can strengthen food safety and 

system resilience through improved decision-
making, early risk detection, cross-border 
coordination, and responsible deployment. They 
also articulate a forward-looking perspective on 
the role of AI in food systems towards 2035.

Across contributions, a common conclusion 
emerges: modern food systems must move 
beyond predominantly preventive and reactive 
models towards resilient systems capable 
of absorbing, adapting to, and acting upon 
disruptions before they escalate. The collection 
spans the full food chain, from primary production 
and precision agriculture to processing, logistics, 
climate services, and regulatory governance, 
demonstrating how AI can convert fragmented 
data into actionable risk intelligence. Contributors 
consistently emphasise predictive, explainable, 
and privacy-preserving AI as prerequisites for 
early warning, anticipatory intervention, and 
coordinated responses to transboundary threats. 
Recurrent themes include interoperable data 
spaces, digital twins and multimodal sensing for 
hazard forecasting, and the necessity of robust 
governance frameworks, human oversight, and 
shared standards to ensure trustworthy scaling.

Re-addressing the food system perspective, 
classic food-safety and authenticity management 
relies on management systems, retrospective 
epidemiology, periodic audits, and batch-based 
testing. While indispensable, these instruments 
are largely preventive or retrospective and offer 
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limited capacity for real-time intervention. AI 
extends this framework in two complementary 
directions.

Firstly, early risk detection: AI models trained on 
multimodal sensor data—including spectroscopy, 
genomic outputs, and environmental variables—
can detect deviations well before they become 
operationally visible. In the spinach example, a 
recurrent neural network could continuously 
evaluate temperature trajectories against 
pathogen growth models, updating the 
conditional probability of microbial outgrowth in 
real time.

Secondly, predictive analytics: AI systems 
integrating agronomic, climatic, trade, and 
behavioural signals can forecast disruptions such 
as mycotoxin outbreaks or logistical bottlenecks 
weeks in advance. Rather than identifying 
isolated failures, these models characterise 
disturbance pathways, allowing stakeholders 
to adjust sourcing, processing, or distribution 
strategies proactively.

A recurring insight in this collection is that 
resilience is not primarily a technological artefact, 
but an emergent property of connected systems. 
Yet food-system data remain highly fragmented: 
sensor data are proprietary, transactional data are 
siloed, and laboratory results are often locked in 
static formats. Several European projects address 
this challenge by making it possible to connect 
and use different types of data together, even 
when they come from incompatible systems.

The resulting transparency does more than 
improve analytics; it reshapes trust relationships 
among producers, regulators, and consumers. 
Resilience is realised when predictive insights 

trigger coordinated action across the supply 
chain, rather than remaining confined to 
individual actors.

At the same time, limitations need to be 
considered too. AI performance is constrained 
by data quality and representativeness; models 
optimised for European value chains may not 
transfer to smallholder or resource-limited 
contexts. Expanded sensor deployment raises 
concerns about e-waste, while large-scale 
computation carries energy costs. Most critically, 
asymmetric data ownership risks reinforcing 
existing power imbalances, particularly for actors 
at the beginning of the supply chain.

AI should therefore be understood not as an 
endpoint, but as a catalyst within a continuous 
cycle of sensing, anticipating, learning, and 
governance. The transition from reactive to 
resilient food systems is not merely a technical 
upgrade; it reflects a cognitive shift, i.e. from 
assumptions of stability to expectations of 
disruption, and from siloed optimisation to 
collective risk management. In this light, the 
spinach consignment that quietly changed 
course on a cold March morning represents 
more than an isolated logistics decision. It 
signals the emergence of a food system in which 
farms, vehicles, laboratories, and regulators 
are increasingly connected through shared 
intelligence, enabling risks to be addressed 
before they materialise. The contributions in 
this issue invite critical engagement with this 
transition: its methods, its limitations, and its 
ethical implications while advancing the shared 
goal of preventing tomorrow’s food crises before 
they even begin.
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Note from the Editor

Europe’s food systems are entering a decisive 
decade. Climate volatility, globalised supply 
chains, emerging biological threats, and 
rapidly evolving production environments are 
reshaping how risks arise and how they must 
be managed. At the same time, the European 
Commission’s Horizon Europe programme 
places strong emphasis on food safety, 
sustainability, data governance, and trustworthy 
Artificial Intelligence, calling for integrated, 
anticipatory, and science based approaches 
that strengthen resilience across the entire 
Farm to Fork continuum. This EFRA Discussion 
Paper brings together expert contributions from 
leading European universities, research centres, 
innovation projects, and food safety applications, 
offering a rich and multidisciplinary perspective 
on how Artificial Intelligence can support this 
transition.

These perspectives align closely with the mission 
of EFRA, which explores how extreme data 
mining, aggregation, and analytics can address 
the scientific, economic, and societal challenges 
associated with food safety and quality. 
EFRA’s objectives, which include discovering 
and distilling food risk data from dispersed 
sources, designing human centred interfaces, 
demonstrating trustworthy, accurate, green, and 
fair Artificial Intelligence, and integrating big data, 
internet of things technologies, and advanced 
analytics, mirror the European Commission’s 
priorities for data driven innovation, transparency, 

and responsible Artificial Intelligence adoption. 
EFRA’s three pillars, the Data Hub, the Analytics 
Powerhouse, and the Data and Analytics 
Marketplace, reflect Horizon Europe’s vision for 
interoperable data spaces, high impact analytics, 
and open innovation ecosystems where data 
holders, innovators, and decision makers 
collaborate to safeguard the food we eat.

A central message emerging from this Discussion 
Paper is the strong alignment between 
EFRA’s work and the European Commission’s 
priorities for Artificial Intelligence in food safety. 
The Commission emphasises the need for 
trustworthy, human centric, and transparent 
Artificial Intelligence systems, interoperable 
and sovereign European data spaces, early 
warning and predictive capabilities for emerging 
risks, and sustainable, resource efficient digital 
infrastructures that support the Farm to Fork and 
Green Deal objectives. EFRA’s focus on extreme 
data discovery, explainable and privacy preserving 
analytics, cross border data interoperability, and 
human in the loop decision support directly 
responds to these priorities and contributes to 
the ambition of building a resilient, anticipatory, 
and science based food safety system for Europe.

Across the nine position statements, several 
shared themes emerge that resonate strongly 
with Horizon Europe priorities. Contributors 
emphasise the growing importance of predictive 
Artificial Intelligence for anticipating hazards 
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before they escalate, whether through plant 
level disease detection, optical sensing, anomaly 
monitoring in robotics, climate risk intelligence, 
or hazard analysis and critical control point 
based risk forecasting. This shift from reactive to 
anticipatory risk management directly supports 
the Commission’s goals for early warning 
systems, crisis preparedness, and climate 
adaptation. Many highlight the need for high 
quality, interoperable, and FAIR data, noting that 
fragmented datasets, inconsistent standards, 
and limited real time monitoring remain major 
barriers to effective risk prediction. Their insights 
align with the development of European level data 
infrastructures such as the Common European 
Agricultural Data Space, the Green Deal Data 
Space, and the European Open Science Cloud.

Trustworthiness is another recurring priority. 
Experts across domains stress that Artificial 
Intelligence systems must be transparent, 
interpretable, uncertainty aware, and auditable, 
especially when they support decisions with 
regulatory or safety implications. This reflects the 
requirements of the European Union Artificial 
Intelligence Act, which mandates traceability, 
human oversight, robustness, and fairness 
for high risk Artificial Intelligence systems. 
EFRA’s focus on explainable, privacy preserving, 
and environmentally responsible Artificial 
Intelligence directly contributes to this European 
agenda. Several contributions also underline the 
importance of sustainable and energy efficient 
digital infrastructures, highlighting lightweight, 
resource efficient Artificial Intelligence 
architectures capable of operating reliably in 
constrained environments. This aligns with 
Horizon Europe’s commitment to green digital 
transformation and the need to ensure that 
Artificial Intelligence adoption does not increase 
environmental burdens.

Cross border cooperation and federated 
intelligence emerge as essential components of 
future food system resilience. Food safety risks 
and climate hazards do not respect national 
boundaries, and contributors highlight the need 

for privacy preserving analytics, federated learning, 
and interoperable governance frameworks that 
enable collaboration without compromising data 
sovereignty. These ideas reflect the Commission’s 
priorities for European data spaces, cross border 
early warning networks, and coordinated 
risk management. Several statements also 
emphasise the importance of hybrid human and 
Artificial Intelligence supported decision making, 
combining computational power with human 
expertise, in line with the European Union’s vision 
for human centric Artificial Intelligence.

Looking ahead to 2035, the visions presented 
in this paper are ambitious yet grounded. 
They include real time sensor networks for 
precision agriculture, hybrid human and Artificial 
Intelligence systems for climate risk intelligence, 
federated European food data spaces, multimodal 
digital twins of the food system, and cross sector 
Artificial Intelligence ecosystems capable of 
detecting anomalies, forecasting disruptions, 
and coordinating responses across borders. 
These visions reflect a shared belief that resilience 
will increasingly depend on anticipatory, data 
driven, and collaborative intelligence supported 
by trustworthy Artificial Intelligence and robust 
governance frameworks.

Together, the nine contributions offer a 
compelling roadmap for how Europe can 
harness extreme data analytics and Artificial 
Intelligence to strengthen food system resilience. 
They demonstrate that progress will depend not 
only on technological innovation, but also on 
governance, interoperability, sustainability, and 
human centred design, all of which are central 
pillars of Horizon Europe. As EFRA continues 
to engage public and private stakeholders, the 
collaborative spirit reflected in this Discussion 
Paper will be essential for realising the full potential 
of Artificial Intelligence in safeguarding Europe’s 
food systems. By aligning scientific excellence 
with European values of trust, transparency, 
sustainability, and fairness, EFRA contributes to a 
future where food safety is proactive, data driven, 
and resilient by design.
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Where can AI add the most value in food safety 
decision-making?

AI offers the greatest value where decisions depend 
on integrating diverse, rapidly evolving information 
streams. In the context of food safety, decision-
making is hindered by multi-layered global supply 
chains, heterogeneous data formats, dynamic 
environmental and market conditions, regulatory 
variation, and multifactorial risks that interact in 
complex ways. Weak or diffuse early signals often 
go unnoticed because surveillance still relies on 
manual reporting, isolated laboratory results, or 
static risk assessments unable to reflect real-time 
system variability. As a result, critical operational 
and regulatory tasks, including prioritising 
inspections, tracing contamination pathways, 
validating supplier compliance, assessing supply-
chain vulnerabilities, or triaging high-risk products, 
remain slow and reactive. Data fragmentation, 
inconsistent standards, limited real-time 
monitoring, sparse contextual metadata, and poor 
integration across environmental, microbiological, 
trade, and behavioural datasets further reduce 

situational awareness and restrict the ability to 
anticipate cascading disruptions across the food 
system. 

AI can bridge these gaps by fusing multimodal 
data into coherent early-warning intelligence. 
Techniques including graph-based models can 
map and propagate risk across supply chains, 
deep learning can detect anomalies or foreign 
objects, and probabilistic, uncertainty-aware 
models can indicate when interventions are 
needed. Generative and representation-learning 
approaches can enrich sparse datasets and 
reveal latent risk factors, while the combination of 
mechanistic knowledge with machine learning 
methods can guide the development of risk-
informed strategies, providing scenario analysis for 
climate-driven hazards, geopolitical disruptions, 
emerging pathogens, or supply-chain stressors. At 
the operational level, AI-driven pipelines support 

AI METHODS & AUTONOMOUS SYSTEMS
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automated food classification, quality grading, 
fraud detection, and contamination screening, 
reducing dependence on resource-intensive 
laboratory testing. By enabling earlier interventions, 
reducing economic losses from outbreaks and 
recalls, and improving overall system resilience, 
AI transforms food safety from reactive incident 
management into anticipatory, risk-intelligent 
decision-making, grounded in timely, evidence-
based insights that benefits regulators, producers, 
and consumers alike.

How is AI helping detect and respond to 
emerging risks in your sector?

Across the health sector, AI has become a central 
tool for strengthening early detection, surveillance, 
and adaptive response. Its role has expanded from 
traditional analytics to sophisticated applications, 
including real-time outbreak monitoring, risk 
prediction, personalised diagnostics, and 
treatment optimisation. The recent acceleration of 
digital innovation, driven in part by the COVID-19 
pandemic, has brought forward cutting-edge 
approaches including generative AI agents for 
rapid evidence synthesis, knowledge graphs 
for linking heterogeneous biomedical data, 
continual learning systems that adapt to evolving 
conditions, and increasingly mature explainable 
and trustworthy AI methodologies. 

Within this broader landscape, our research 
focuses on disease modelling and developing 
reliable and robust adaptive frameworks for the 
prognosis, diagnosis, and management of complex 
diseases. In this direction, we fuse multimodal 
clinical, physiological, behavioural, molecular, and 
environmental data using physiology-informed 
mathematical models, advanced machine learning 
and deep learning, interpretability techniques, 
uncertainty quantification, and bias mitigation and 
domain adaptation methods. These approaches 
address critical challenges related to the clinical 

adoption of AI-based systems - trustworthiness, 
interpretability, generalisability, and fairness - and 
have been applied to diabetes, cardiovascular 
conditions, neurodegenerative diseases, cancer, 
and COVID-19,  demonstrating strong capability in 
detecting evolving and multimodal risk signals. 

For example, our LSTM-based influenza-like illness 
forecasting system combined surveillance data, 
weather conditions, and Twitter activity and showed 
that multimodal fusion significantly outperforms 
single-source models. Similarly, our drift-adaptive 
COVID-19 detection framework, our interpretable 
Alzheimer’s disease diagnostic models, and 
our uncertainty-aware adaptive frameworks for 
cardiovascular risk stratification illustrate how 
integrating heterogeneous data with advanced AI-
driven modelling approaches enhances detection 
sensitivity and adaptive response. These same 
principles are directly transferable to food safety 
for identifying emerging contamination routes, 
environmental stressors, supply-chain anomalies, 
or behavioural drivers of risk in real time.

What are the main challenges in deploying AI 
for resilient food systems?

AI deployment for resilient food systems is 
constrained by a combination of technical, 
organisational, and governance challenges. On the 
technical side, data remain highly fragmented and 
heterogeneous, originating from microbiological 
analyses, sensor networks, climate models, 
logistics records, and behavioural sources, 
often with incompatible formats, inconsistent 
ontologies, and limited contextual metadata. This 
lack of interoperability makes it difficult to integrate 
information across the supply chain, while sparse 
real-time monitoring and uneven data quality 
hinder the development of reliable and adaptive 
early-warning systems. Models often struggle with 
generalisability as food systems evolve - changes 
in supply-chain behaviour, pathogen dynamics, or 

Position Statement from BioSim
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environmental conditions can trigger performance 
drift. In this context, the lack of mechanisms for 
drift detection and model adaptation results in 
degraded performance as patterns shift over time 
and/or across domains.

Trustworthiness is another key barrier: although 
regulators and industry stakeholders require 
interpretability and confidence estimates to assess 
the reliability of model outputs, many current tools 
remain opaque, providing point estimates without 
transparent reasoning or confidence measures. At 
the organisational level, uneven digital maturity, 
limited analytical expertise, and the difficulty of 
embedding AI into existing inspection and quality-
assurance workflows hinder effective adoption. 
Governance challenges further pronounce these 
issues, particularly around regulatory compliance, 
as organisations must navigate evolving 
requirements, including robustness, fairness, 
accountability, and human oversight under the EU 
AI Act, while balancing data-sharing constraints 
linked to confidentiality, commercial sensitivity, 
and GDPR. 

Progress in resilient food systems depends on 
domain‑specific infrastructures, trustworthy 
modelling, and collaborative governance. 
Harmonised standards and practical data‑sharing 
mechanisms must enable safe exchange across the 
supply chain, while drift detection, interpretability, 
and fairness are built into AI design.

What does trustworthy AI look like in the 
context of food safety?

Trustworthy AI is built on four foundational pillars - 
interpretability, uncertainty awareness, robustness, 
and fairness - supported by regulatory compliance 
and meaningful human oversight. These principles 
ensure that AI systems behave transparently, 
reliably, and safely in high-stakes environments. 
In food safety, interpretability means that models 

must provide clear, traceable explanations of risk 
alerts so inspectors and regulators can understand 
the underlying evidence. Interpretability 
techniques widely adopted in various domains 
including feature attribution, surrogate models, 
counterfactual explanations, and rule-based 
components, can be directly applied to make food-
safety predictions understandable and auditable. 

Uncertainty awareness ensures that AI systems 
communicate how confident they are in a 
prediction, allowing authorities to distinguish 
high-confidence alerts from cases where human 
review is needed: Bayesian inference, ensembles, 
or Monte Carlo dropout provide explicit 
confidence measures that prevent over- or under-
reaction. Robustness requires models to remain 
reliable as supply-chain patterns, pathogens, or 
environmental drivers evolve. Various approaches 
for drift detection, continual learning, and domain 
adaptation have been proposed to address such 
challenges and can be leveraged in the field of 
food safety. 

Bias-mitigation strategies, such as balanced 
sampling, bias audits, algorithmic modifications, 
and counterfactual analyses, can help prevent 
systematic disparities in food-safety decisions, 
ensuring consistent performance across regions, 
production systems, and product categories. 
By operationalising these pillars through well-
validated methodologies, AI systems in food safety 
can become transparent, adaptive, scientifically 
grounded, and suitable for regulatory and industry 
use.

How can AI support cross-border coordination 
and data sharing to enhance food system 
resilience?

AI can strengthen cross-border coordination 
by enabling data harmonisation, shared digital 
infrastructures, secure information exchange, 

Position Statement from BioSim
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shared early-warning intelligence, and coordinated 
response mechanisms. AI systems can harmonise 
heterogeneous datasets through automated 
ontology mapping, knowledge graphs, and 
multimodal fusion, allowing environmental, 
microbiological, trade, and logistics data from 
different countries to become interoperable. 
Progress depends on common data standards 
and shared infrastructures, including unified 
terminologies, metadata schemas, reporting 
formats, and connectivity frameworks that allow 
AI tools to operate reliably across jurisdictions. 

Effective coordination also requires digital 
readiness, ensuring all countries have the capacity, 
governance structures, and technological 
foundations to engage in cross-border data 
sharing. Privacy-preserving technologies such 
as federated learning and differential privacy can 
enable collaborative model development without 
exposing sensitive commercial or personal data. 
AI-driven traceability systems, powered by IoT 
sensors, blockchain, and digital product passports, 
are able to enhance real-time cross-border visibility 
and support rapid, coordinated recalls.

Shared early-warning models that integrate 
climate indicators, pathogen dynamics, supply-
chain signals, and trade flows can detect 
transnational threats and support joint assessment 
and response. Underpinning these capabilities are 
collaborative governance frameworks that define 
responsibilities, ensure accountability, support 
safe data sharing, and institutionalise long-term 
cooperation. Together, these components enable 
an integrated, intelligence-driven approach to 
food-system resilience at regional and global scale.

Looking ahead to 2035, what breakthrough 
would you like to see in AI for resilient food 
systems?

By 2035, a transformative breakthrough would 
be the adoption of adaptive multimodal risk-
intelligence platforms that can reliably forecast 
emerging food-system threats before they 
materialise. Such platforms would integrate 
sensor data, laboratory findings, climate signals, 
and supply-chain dynamics into a unified digital 
environment, powered by explainable models 
that continuously recalibrate as conditions evolve. 
Rather than static dashboards, this would resemble 
a dynamic digital twin of the food system, capable 
of running scenario simulations, stress-testing 
vulnerabilities, and guiding targeted interventions 
with traceable reasoning. 

Realising this vision will depend not on producing 
more AI tools, but on building the foundations that 
make such platforms reliable: high-quality and 
interoperable data, robust, transparent model-
validation frameworks, and regulatory capacity 
to evaluate adaptive, uncertainty-aware systems. 
Experience from healthcare - where multimodal 
fusion, advanced AI-driven analytics, drift-adaptive 
diagnostics, and rigorous validation already support 
complex decision-making - shows how such a 
paradigm can be made operational. Bringing 
this approach to food safety would enable a shift 
from episodic surveillance to predictive resilience, 
empowering decision-makers with anticipatory, 
scientifically grounded intelligence.

Position Statement from BioSim
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Where can AI add the most value in food safety 
decision-making?

Climate change is exerting profound pressure on 
global food systems, exposing them to increasingly 
frequent and severe hazards such as prolonged 
droughts, extreme rainfall, soil degradation, and 
the emergence of new pests and pathogens. 
These disruptions reveal a structural vulnerability: 
traditionally, food systems have relied on reactive 
approaches, responding to shocks only after they 
materialize. 

In recent years, climate services have emerged as 
a domain dedicated to translating climate science 
into actionable information and tools that support 
informed, anticipatory decision-making. At the 
same time, artificial intelligence (AI) is reshaping the 
capacity of climate services to move from narrow, 
physical science-based analysis to comprehensive 
climate risk intelligence. The HACID project (https://
www.hacid-project.eu) offers a timely example 

of how hybrid human–AI systems can support 
more resilient decision-making in this evolving 
landscape.

Climate services can be broadly understood as the 
processes and tools that transform raw climate 
data into actionable, context-specific information 
for decision-makers. This includes the production 
of datasets based on observations and simulated 
futures at seasonal to multi-decadal timescales 
which are then interpreted, translated and 
communicated to a wide range of audiences. 

For food systems, climate services serve an 
increasingly critical role by supporting farmers, 
policymakers, and supply-chain actors in managing 
both immediate and long-term risks. Seasonal 

AI METHODS & AUTONOMOUS SYSTEMS
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forecasts currently inform planting choices and 
irrigation planning; climate projections guide 
the design of resilient infrastructure, cultivation 
of climate resilient crop varieties and insurance 
schemes; and hazard analyses illuminate how 
climatic shifts may affect crop suitability, market 
stability, and food safety. In essence, climate 
services offer a bridge between complex climate 
science and the diverse operational and long-term 
strategic decisions required to safeguard food 
system functioning.

How is AI helping detect and respond to 
emerging risks in your sector?

The introduction of AI into climate services 
strengthens this bridge in several important 
ways. First, AI enhances the capacity to synthesise 
the immense and rapidly expanding volume of 
climate data produced by observational systems 
and climate models. The latest CMIP6 ensemble 
alone generates datasets so large and complex 
that making sense of the available information is 
increasingly impractical. 

Second, AI supports predictive modelling across 
multiple timescales, as well as downscaling global 
and regional projections to obtain high-resolution 
information. More accurate data means improving 
early detection of risks such as drought onset, 
detecting patterns like shifts in precipitation 
regimes, or detecting relevant conditions 
conducive to crop diseases. These capabilities 
allow climate information to be used not only 
descriptively but also prognostically, enabling 
earlier and more targeted interventions. 

Third, generative AI contributes to decision support 
by structuring complex adaptation workflows, 
exploring alternative scenarios, and helping users 
evaluate the robustness of adaptation strategies 
under uncertainty. When combined with human 
expertise, AI can help reduce cognitive burdens, 
limit bias, and increase the completeness of 
assessments.

What are the main challenges in deploying AI 
for resilient food systems?

Despite these contributions, the deployment of 
AI in climate services is not without challenges. 
The fragmentation of climate, agricultural, and 
socioeconomic datasets - both in terms of 
availability and compatibility - continues to impede 
integrated analysis, while issues of transparency 
and explainability create barriers to trust, especially 
when AI-generated outputs influence high-stakes 
decisions. 

The diversity of potential users - from smallholder 
farmers to national/international policy makers 
- means that climate services must be tailored 
to differing capacities and contexts, raising 
questions about accessibility and usability. Ethical 
considerations, including bias embedded in data 
and the risk of privileging the needs of data-rich 
regions, further complicate deployment. 

Moreover, because food systems cross national 
borders, the absence of harmonised governance 
frameworks limits the ability of AI-driven climate 
services to operate effectively at the transnational 
scale required by global supply chains.

What does trustworthy AI look like in the 
context of food safety?

The HACID project (Hybrid Human-Artificial 
Collective Intelligence for Decision Support in Open-
Ended Domains) directly addresses several of these 
challenges by exploring how collective intelligence 
- emerging from collaboration between human 
experts and AI agents - can support climate-related 
decisions. HACID focuses specifically on climate 
services, providing a decision support system (DSS) 
that helps policymakers and organizations adapt 
to uncertain future climate conditions. Central 
to the project is the construction of an extensive 
domain knowledge graph (DKG) that integrates 
climate projections, datasets endorsed by national 
governments, and established methodologies 

Position Statement from HACID
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for selecting and processing climate information. 
This DKG maps the relationships among climate 
models, hazards, indices, and methodologies for 
climate information analysis, thus formalizing 
complex reasoning processes that climate experts 
typically undertake.

Within the HACID DSS, experts confronted with 
a specific problem - such as change in surface 
water flooding risk - identify and annotate relevant 
elements of the DKG, drawing on their disciplinary 
knowledge, and propose workflows that can lead 
to the best risk assessment. AI agents operate in 
parallel, proposing their own structured solutions 
based on the knowledge resources, potentially 
exploiting the wide diversity of methods and 
approaches modelled in the DKG. The system 
then synthesizes insights from all contributors, 
producing a more comprehensive and transparent 
pathway for extracting relevant climate information. 
This hybrid approach enhances early detection of 
emerging risks by surfacing connections that might 
be overlooked by individual experts and increasing 
the diversity of approaches, while also providing 
an auditable rationale for decision-making. It thus 
supports a more resilient form of climate service 
provision, grounded in both computational power 
and human interpretative capacity.

How can AI support cross-border coordination 
and data sharing to enhance food system 
resilience?

Extending HACID to food safety and food system 
resilience would require several next steps. The 
knowledge base would need to incorporate 
climate-sensitive food safety risks, such as 
waterborne pathogen dynamics, contamination 
pathways, and the effects of extreme weather 
on storage environments, as well as food system 
resilience, such as characterisation of abiotic and 
biotic factors that influence crop productivity. 

Strengthening cross-border coordination would 
require interoperable governance frameworks to 
ensure the secure, trustworthy exchange of climate 

and food safety data. Such integration is essential 
because climate hazards that affect food safety 
do not respect national boundaries, and supply 
chains increasingly depend on synchronised risk 
communication.

Moreover, embedding food safety regulatory 
processes into the HACID DSS would help 
ensure that recommended adaptation strategies 
align with existing inspection protocols, legal 
frameworks, and operational workflows across 
different jurisdictions. This alignment would 
enhance trust in AI-supported decisions and 
facilitate coordinated action across the food 
system.

Looking ahead to 2035, what breakthrough 
would you like to see in AI for resilient food 
systems?

Looking ahead to 2035, a transformative 
breakthrough would be the emergence of a globally 
integrated, AI‑enabled climate‑risk intelligence 
infrastructure dedicated to food systems. Such 
an infrastructure would combine long‑term 
climate projections with real‑time monitoring from 
sensors, satellites, and supply‑chain data streams 
to provide risk narratives.

It would be capable of continuously detecting 
emergent risks and opportunities while 
simulating alternative adaptation pathways and 
recommending context‑appropriate actions. 
Importantly, this system would operate through 
hybrid human–AI teams, ensuring that scientific 
rigour, local knowledge, and ethical considerations 
remain central.

Achieving such an infrastructure would represent 
a decisive shift from reactive crisis management 
to anticipatory governance of climate‑resilient 
food systems, aligning closely with the vision that 
HACID is beginning to articulate.

Position Statement from HACID
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Where can AI add the most value in food safety 
decision-making?

Although PLIADES does not target the food domain 
directly, its architecture for full‑data‑lifecycle 
optimisation and AI‑enabled interoperable data 
spaces demonstrates how complex distributed 
data ecosystems can support evidence‑based 
decision‑making. In food safety contexts, similar 
approaches could be adapted to connect 
inspection records, IoT sensor data, and logistics 
tracking under shared semantics and governed 
access rules. By enabling real‑time linkage of 
heterogeneous datasets, the PLIADES framework 
offers a transferable model for shifting from 
reactive to proactive food safety management, by 
reducing the latency between data acquisition, 
analysis, and strategic or operational decisions.

How is AI helping detect and respond to 
emerging risks in your sector?

PLIADES develops AI‑assisted mechanisms for 
data quality monitoring, semantic alignment, 
and integrity validation within interconnected 

and interoperable data spaces. These capabilities 
ensure that information exchanged across sectors 
remains consistent, reliable, and actionable - 
conditions essential for early risk detection and 
response. While PLIADES applies these methods 
in mobility, healthcare, manufacturing, energy, 
robotics, and Green Deal use cases, the same 
principles could be extended to food systems, 
where identifying risks such as contamination, 
fraud, or supply‑chain disruptions depends on 
timely, high‑quality data. By enabling federated 
analytics and trusted cross‑domain data sharing, 
PLIADES provides a transferable framework for 
proactive, AI‑driven risk intelligence.

What are the main challenges in deploying AI 
for resilient food systems?

The main barriers in deploying AI for resilience 
in food systems (many of which are tackled in 
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PLIADES) span technical, organisational, and 
regulatory dimensions. Across its mobility, 
healthcare, manufacturing, energy, robotics, and 
Green Deal domains, PLIADES addresses data 
fragmentation, lack of interoperability standards, 
and trust deficits that limit cross‑sector data use. 
It develops semantic alignment methods, data 
quality frameworks, explainable AI tools, and 
governance models to ensure transparency and 
sovereignty. These enablers, together with shared 
infrastructures and capacity building for smaller 
actors, are equally relevant to food systems, where 
reliable, explainable, and ethically governed AI is 
essential for safe and adaptive decision‑making.

What does trustworthy AI look like in the 
context of food safety?

In PLIADES, trustworthiness is achieved through 
transparency, explainability, and continuous human 
oversight across the AI and data lifecycle. The project 
develops metadata‑driven traceability, provenance 
tracking, and explainable AI methods that make 
automated insights auditable and interpretable 
by end users. Every AI‑assisted decision can be 
linked to its data origin, validation status, and 
confidence level, supporting accountability and 
human‑in‑the‑loop supervision. While applied 
in mobility, healthcare, manufacturing, energy, 
robotics, and Green Deal domains, these principles 
can inspire trustworthy AI in food safety - where 
clear reasoning, transparent data flows, and ethical 
oversight are essential for building confidence 
among regulators, producers, and consumers.

How can AI support cross-border coordination 
and data sharing to enhance food system 
resilience?

PLIADES advances a federated architecture of 
interoperable European data spaces, where AI 
enables collaboration without compromising 

data sovereignty or privacy. Through semantic 
harmonisation, metadata registries, and trusted 
governance frameworks, the project demonstrates 
how AI can align standards and support shared 
intelligence across borders and sectors. Applied 
to food systems, such an approach could enable 
coordinated responses to emerging risks by linking 
regional data under common semantics and ethical 
rules. PLIADES’ work across mobility, healthcare, 
manufacturing, energy, robotics, and Green Deal 
domains provides a reusable blueprint for resilient, 
cross‑border data ecosystems compliant with EU 
data‑space and AI policy priorities.

Looking ahead to 2035, what breakthrough 
would you like to see in AI for resilient food 
systems?

By 2035, the vision inspired by PLIADES is a 
federated European Food Data Space where AI 
continuously monitors, analyses and predicts 
risks across the entire food‑value chain. Data from 
farms, processing plants, logistics, and regulators 
would interconnect through trusted, interoperable 
infrastructures guided by transparent governance 
models. Such a system would enable real‑time, 
cross‑border collaboration, where AI not only 
detects emerging threats but anticipates them 
through continuous learning and multi‑sector 
data integration. Building on the interoperability, 
governance, and trust mechanisms developed 
in PLIADES, this future ecosystem would make 
resilience an inherent property of Europe’s food 
systems.

Position Statement from CERTH / PLIADES
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How can predictive AI technologies strengthen 
resilience in food systems or related domains?

Predictive AI becomes far more reliable when 
supported by a structured understanding of where 
anomalies can emerge within an AI-powered 
system. These anomalies can arise not only from 
sensors or hardware, but also from the behaviour of 
the AI model itself, for example, when it encounters 
situations, it was not trained on or when its internal 
representations drift over time. By examining the 
full decision pipeline, from sensing to execution, 
organisations can recognise early signs that the 
system is diverging from expected behaviour. 
Rather than assuming complete knowledge of 
how anomalies emerge, modern approaches focus 

on detecting deviations from normal operational 
patterns, even when those deviations have never 
been observed before. This strengthens resilience 
in domains such as robotics and can be transferred 
to food systems, where early identification of 
unexpected readings, equipment irregularities, 
or process fluctuations is essential for safety and 
continuity. Combining predictive models with 
continuous monitoring of system behaviour helps 
organisations anticipate risks sooner, reduce 
uncertainty, and maintain stable and trustworthy 
operations.
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What technical or organisational barriers 
limit the deployment of predictive AI in food 
systems or similar contexts?

Several factors limit the effective deployment of 
predictive AI and anomaly detection in critical 
systems. A key technical challenge is that AI models 
must not only interpret their environment but also 
estimate the uncertainty within it. Building models 
capable of recognising both expected signals 
and uncertain or ambiguous situations requires 
development methodologies that are more 
complex than those used in traditional prediction 
tasks. At the system level, the surrounding 
framework must also be able to handle uncertainty: 
the decision-making pipeline should integrate not 
only the model’s outputs but also information 
about confidence levels or potential anomalies 
arising from different components. When we 
deal with robots we need to make sure that they 
remain safe for the objects (including humans) 
in their environment, even when parts of their 
control have been trained using AI components. 
This demands continuous monitoring, real-
time processing, and infrastructures able to 
combine signals from sensing, interpretation, and 
planning stages. Interoperability issues, such as 
incompatible data formats or isolated software 
modules, further limit the ability to form a unified 
view of system behaviour. Organisational factors 
also contribute: limited familiarity with AI-based 
diagnostics, uncertainty about accountability when 
automated alerts are raised, and reluctance to 
modify established procedures can slow adoption. 
Together, these barriers make it challenging to 
build dependable, transparent predictive systems 
capable of detecting and responding to anomalous 
behaviour early.

What are the key enablers and barriers for data 
sharing in the food industry, and how can AI 
help?

Sharing operational and monitoring data is 
important for detecting anomalies early, as it 
helps create a clearer picture of how a system 
behaves across different stages of sensing, 
interpretation, and decision-making. Ensuring the 
safety of the decisions taken is paramount for the 
trustworthiness of any system. However, several 
factors limit this kind of sharing. Organisations may 
be cautious about sharing internal system signals 
due to privacy concerns, unclear responsibilities, 
or uncertainty about how diagnostic information 
will be used. Technical barriers also play a 
role: incompatible formats, isolated tools, and 
fragmented infrastructures prevent the integration 
of data needed to understand unusual behaviour in 
context. AI can support more secure collaboration 
through privacy-preserving methods, shared 
representations that protect sensitive details, 
and automated checks that ensure data quality. 
In addition, AI-on-the-edge and embodied 
intelligence can reduce the need to share raw data 
externally by enabling systems to analyse signals 
locally and transmit only essential insights. These 
capabilities help create reliable foundations for 
early anomaly detection without compromising 
confidentiality or operational security.

How do you approach explainability and trust 
in AI systems used for risk prediction?

Building explainability and trust in AI systems 
begins with making their internal behaviour 
visible and interpretable. A practical approach is 
to examine how signals evolve across the different 
stages of an AI system, such as perception, 
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interpretation, and decision-making, to identify 
when the system starts to diverge from expected 
behaviour. Highlighting these changes in clear, 
human-readable formats helps operators 
understand why a particular decision was made 
and when an intervention may be necessary. Trust 
is further supported through mechanisms that 
allow experts to review alerts, validate the system’s 
reasoning, and adjust parameters when unusual 
behaviour is detected. By combining transparent 
monitoring with human oversight, AI systems used 
for risk prediction can provide more dependable 
and understandable outputs, even in complex 
operational environments.

What considerations guide the design 
of sustainable AI infrastructure in your 
organisation or field?

Sustainable AI infrastructure prioritises efficiency, 
stability, and long-term reliability. In robotics and 
autonomous systems, this means designing 
models that can monitor behaviour and 
detect anomalies without requiring excessive 
computational resources to guarantee safety. 
Lightweight architecture reduces energy 
consumption and makes continuous operation 
more feasible, especially in environments where 
systems must run safely and reliably for extended 
periods. Sustainability also involves creating models 
that remain stable over time, limiting the need 
for frequent retraining or manual adjustments. 
It is equally important to develop interfaces 
and model architectures that can be upgraded 
directly, without extensive hardware changes or 
major redesigns of the decision-making pipeline. 
Standardised frameworks help support this by 
enabling components to be updated, replaced, 
or extended with minimal disruption. These 
considerations are relevant to food systems as well, 
where energy-efficient, easily maintainable, and 

dependable AI tools support resilient operations 
and reduce the environmental footprint of data-
driven processes.

Looking ahead to 2035, what breakthrough 
would you like to see in AI for resilient food 
systems or cross-sector collaboration?

By 2035, a breakthrough would be the widespread 
adoption of AI systems that not only monitor 
their own behaviour continuously but also adapt 
effectively to changes in their environment. 
Beyond identifying irregularities future systems 
should be able to update their internal models, 
adjust parameters, and refine their responses 
as conditions evolve, ideally without requiring 
complete retraining or disruptive recertification 
processes in critical sectors. Building on advances 
in anomaly detection and system understanding, 
next-generation AI should be able to:

•	 detect unusual behaviour early and respond 
safely,

•	 adjust to changing environments while 
maintaining dependable performance,

•	 provide clear explanations when something 
goes wrong, and

•	 follow established standards for trustworthy 
and transparent operation.

Such capabilities would allow robotic platforms, 
food-processing equipment, and supply-chain 
technologies to operate more reliably, even under 
uncertainty. Achieving this vision will require 
strong collaboration across research, industry, and 
policy. Enhancing early anomaly detection and 
coordinated response mechanisms is essential for 
creating AI systems that society can depend on in 
critical domains where safety for their environment 
also needs to be guaranteed.
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Where can AI add the most value in food safety 
decision-making?

Food safety decision making is a critical sector 
for European citizens, where complexity and 
diverse supply chains create a challenging task for 
reliable tracking of food sources and a trustworthy 
monitoring system for the different stakeholders 
involved. AI as an enabler via the integration of 
different trust based technologies, i.e., blockchain, 
can not only accelerate automation of different 
processes, but also increase trust and traceability 
of the entire action chain. 

In this respect, OASEES extends the blockchain 
based paradigm of Decentralized Autonomous 
Organizations (DAOs), where decision making is 
governed by smart contracts, which are transparent 
and controlled by its members, which can be both 
humans and AI agents. This convergence creates 
an interface for experts/regulators to approve or 
override different AI based decisions, on zero-trust 
policy. AI adoption may face obstacles based on 
trust issues, therefore a systematic approach on 

traceability and auditing of decisions can truly 
benefit such a critical sector as is food safety of 
today.

How is AI helping detect and respond to 
emerging risks in your sector?

Edge inference and data processing close to the 
source can be a significantly beneficial factor in 
different aspects of the food supply chain, as they 
not only accelerate procedures but also preserve 
the privacy and integrity of the data produced and 
inferred.

In this respect, OASEES follows an edge‑first 
approach in its programmable framework, 
adopting certain primitives of the compute‑to‑data 
paradigm. The AI models produced are deployed 
close to the site, with edge processing tailored for 
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resource‑constrained devices (e.g. swarms), which 
can process data ad hoc, limiting cloud resource 
usage to the bare minimum.

From the perspective of food systems, the 
proposed paradigms can be directly applied, since 
the amount of generated data is vast, and it is 
logical to constrain data processing close to the 
source.

What are the main challenges in deploying AI 
for resilient food systems?

A key challenge for AI deployment in food systems 
is heterogeneity. The number of different cases and 
their corresponding enablers varies significantly, 
creating diverse requirements and limitations, 
which makes it difficult to establish a holistic 
approach.

This also creates challenges from a scaling 
perspective, since scalability normally depends on 
unified resource management, especially within 
the cloud/edge continuum. Different cases scale 
differently, and a horizontal approach - particularly 
in a resilient food system - can generate a multitude 
of challenges in building a fully functional 
end‑to‑end lifecycle.

What does trustworthy AI look like in the 
context of food safety?

For food safety, this translates into trusted AI 
pipelines where data provenance is verifiable across 
the continuum, risk scores and recommendations 
are traceable to models and data sources, and 
regulators or quality managers can inspect DAO 
records showing how alerts were handled, which 
thresholds were changed, and who authorised 
each step.

OASEES proposes a layered architecture with 
segregation of security zones and data‑minimising 
designs, supporting compliance‑friendly, 
“explainable‑by‑design” AI. Explainability and 
human oversight are realised via human‑in‑the‑loop 
mechanisms embedded in DAO workflows, where 
domain experts validate data, vote on actions, and 
review logs of robot or service behaviour.

How can AI support cross-border coordination 
and data sharing to enhance food system 
resilience?

OASEES aligns with European initiatives for 
sovereign, interoperable data spaces (e.g. Gaia‑X, 
IDSA) and demonstrates how federated operation 
across multiple operators and jurisdictions can be 
implemented.

In the food sector, this could underpin cross‑border 
early‑warning networks where AI models run locally 
on national infrastructures but share anonymised 
features, risk indicators, or aggregated traces 
through governed data spaces - aligning standards 
while respecting local rules and commercial 
sensitivities.

Furthermore, it enables participants to share 
AI‑ready data products under explicit policies while 
retaining sovereignty.

Looking ahead to 2035, what breakthrough 
would you like to see in AI for resilient food 
systems?

A desirable 2035 breakthrough is a pan‑European 
“food‑risk swarm continuum”: thousands of 
interoperable swarms of sensors, robots, logistics 
nodes, and analytical services, each operated by 
different actors but orchestrated via common 
SDKs, DAOs, and data‑space rules.

In such a system, edge AI would continuously assess 
contamination, fraud, and infrastructure risks; 
service‑mesh technologies would automatically 
reconfigure flows and capacity; and DAO‑based 
governance would align incentives so that farmers, 
processors, retailers, and authorities collaboratively 
manage risk.

Rather than isolated pilots, this would be a living, 
self‑optimising network where every new sensor 
or model instantly strengthens collective foresight, 
and where transparency, accountability, and 
human oversight are embedded by design.
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How can predictive AI technologies strengthen 
resilience in food systems or related domains??

Predictive AI can strengthen food system 
resilience by transforming digitally structured 
food safety data into probabilistic risk intelligence. 
When hazard analyses, process controls, and 
supply parameters are encoded in interoperable 
formats, such as those emerging from digital 
HACCP systems, machine learning models can 
detect precursor signals of contamination, forecast 
hazard emergence, and quantify risk propagation 
across product lines or supplier networks.

Methods including multivariate anomaly detection, 
time-series forecasting, and Bayesian inference can 
predict contamination likelihood from deviations 
in ingredient quality, equipment conditions, or 
environmental monitoring signals. Similar to 
infectious-disease forecasting and climate-risk 
modelling, these approaches enable proactive 
interventions rather than post-hoc containment.

Embedded within privacy-preserving and 
explainable infrastructures, predictive AI 
enables HACCP systems to evolve into adaptive, 

continuously learning risk controls that reduce recall 
probability, enhance supply-chain robustness, and 
strengthen public health protection.

What technical or organisational barriers 
limit the deployment of predictive AI in food 
systems or similar contexts?

The deployment of predictive AI in food systems 
is primarily constrained by fragmented and 
unstructured data architectures. Most food safety 
information, including HACCP plans, monitoring 
results, supplier data, and environmental records, 
still exists as non‑standard documents rather than 
machine‑interpretable datasets, limiting model 
training and interoperability.

Technical infrastructure gaps persist in small 
and mid‑sized enterprises, where secure 
cloud computing, sensor integration, and 
privacy‑preserving analytics are not uniformly 
adopted.
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Organisational barriers further hinder deployment: 
risk‑averse cultures prioritise compliance over 
innovation, and the absence of agreed data 
standards complicates cross‑company data 
sharing needed for multi‑party risk forecasting.

Lessons from health and environmental domains 
show that predictive systems become viable only 
when governance frameworks, explainability 
requirements, and incentive structures are aligned 
to support data interoperability, secure model 
access, and human‑centred oversight rather than 
ad hoc digitalisation.

What are the key enablers and barriers for data 
sharing in the food industry, and how can AI 
help?

Data sharing across food systems is often limited 
by concerns over commercial sensitivity, lack of 
standardised data models, and uneven digital 
maturity among actors. HACCP and supplier data, 
for example, are still predominantly stored as 
proprietary documents, making them difficult to 
exchange without disclosing sensitive information. 
Trust and interoperability therefore become 
prerequisites for collaboration.

Predictive AI can enable new sharing models by 
operating on securely federated data rather than 
requiring centralised access. Privacy‑preserving 
techniques such as federated learning, differential 
privacy, and secure multiparty computation make 
it possible to train risk‑forecasting models without 
exposing confidential information.

When combined with standardised, 
machine‑interpretable data structures, such as 
those emerging from digital HACCP systems, these 
technologies create incentives for collaboration by 
allowing companies to contribute to shared risk 
intelligence while retaining control over their data. 
AI thus becomes both a technical enabler and 
a governance mechanism for multi‑party food 
safety resilience.

How do you approach explainability and trust 
in AI systems used for risk prediction?

Explainability and trust in predictive AI for food‑risk 
management require models to support traceable 
reasoning rather than opaque outputs. Because 
food safety control decisions, such as those guided 
by HACCP decision trees for critical control points 
(CCPs), carry regulatory implications and directly 
influence consumer protection, risk‑forecasting 
systems must demonstrate how a prediction 
derives from underlying hazards, process 
parameters, or supplier evidence.

Techniques such as feature attribution (e.g. SHAP 
values), Bayesian reasoning, and rule‑augmented 
machine‑learning can expose the contribution 
of specific data sources to predicted risk levels. 
Human oversight remains central: AI outputs 
should be presented as decision support with 
uncertainty estimates, auditable provenance, and 
clear links to recommended control actions.

As demonstrated in other industries, interpretable 
risk scores, transparent audit trails, and expert 
validation build trust among regulators and 
operators. In alignment with EU AI Act requirements, 
trustworthy AI must pair technical transparency 
with documented governance protocols, ensuring 
that modelling reinforces (rather than replaces) 
scientific judgement in food safety.

What considerations guide the design 
of sustainable AI infrastructure in your 
organisation or field?

Designing sustainable AI infrastructure for food risk 
prediction requires balancing model performance 
with computational efficiency and environmental 
impact. In food systems, where risk models may 
run continuously across distributed facilities, 
lightweight architectures can outperform large 
energy-intensive models by focusing on structured 
domain data, such as standardized hazards, CCP 
logic, or supplier risk attributes, rather than broad, 

Position Statement from DQFS



DICSUSSION PAPER

EDITED BY

AI for Resilient Food Systems and Risk Intelligence 

26

unbounded learning. Model compression, edge 
deployment for on-site processing, and selective 
retraining strategies reduce cloud usage and 
energy demand.

Sustainability also depends on governance: 
transparent data standards help minimise 
redundant computation, and privacy-preserving 
methods (e.g., federated learning) reduce the need 
to centralise large datasets, lowering storage and 
transfer costs. Lessons from climate informatics 
show that targeted, domain-specific models 
consistently produce more stable and resource-
efficient predictions.

Applied to food safety, sustainable AI infrastructures 
prioritise responsible scaling, domain-guided 
modelling, and lifecycle monitoring of model 
performance and compute, ensuring that 
resilience gains do not create new environmental 
burdens.

Looking ahead to 2035, what breakthrough 
would you like to see in AI for resilient food 
systems or cross-sector collaboration?

By 2035, a transformative breakthrough would 
be the emergence of a global, privacy-preserving 

“Predictive Food Risk Commons” that unites 
regulators, industry, laboratories, and public health 
agencies through secure, explainable AI. Such an 
infrastructure would allow models to continuously 
learn from anonymised HACCP data, pathogen 
genomics, climate signals, trade flows and supply-
chain disruptions, enabling probabilistic forecasting 
of contamination pathways and system stressors 
without requiring any participant to relinquish data 
ownership.

Federated learning, synthetic data, and causal AI 
would support early detection of emerging hazards 
and simulate how control interventions alter 
risk trajectories, while domain-aware reasoning 
systems could propose validated countermeasures 
and quantify uncertainty. Integrated with the 
EU AI Act, a food safety common would embed 
human-auditable risk logic, ethical stewardship, 
interoperability standards, and energy-efficient 
computation.

Success would mean food safety systems capable 
of anticipating threats collaboratively, safeguarding 
public health through shared foresight, and 
strengthened by collective intelligence rather than 
fragmented effort.
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Where can AI add the most value in food safety 
decision-making?

AI adds the most value to food safety when 
it integrates heterogeneous signals into early, 
actionable decisions that prevent hazards before 
they enter the food chain. This encompasses 
weather, phenology, pest pressure, and soil/water 
quality, as well as plant-level detection of diseases 
that typically emerge in small, rapidly expanding 
clusters. Because symptoms of key pathogens are 
detectable far earlier than conventional laboratory 
analyses (Dhaka et al., 2021), AI-powered tools, 
such as smartphone-based detection developed 
in projects like NextGenBioPest, dramatically 
strengthen early warning capabilities.

Moreover, these plant-level insights become even 
more powerful when integrated into system-level 
decision workflows. For instance, in the Smart 
Droplets project, they are fed into prescription 

maps, adaptive Direct Injection System (DIS) 
spraying, and digital twin simulations (Zhang et 
al., 2025) that reduce chemical loads, drift, and 
residue-related risks while exploring “what-if” 
strategies for choosing the safest intervention 
paths.

How is AI helping detect and respond to 
emerging risks in your sector?

AI is transforming the detection of emerging risks 
in agriculture by enabling continuous, plant-level 
surveillance and rapid diagnosis of early symptoms 
that would otherwise go unnoticed. Many fungal 
pathogens emerge in small, localised outbreaks 
that expand rapidly, and their early signs are often 
difficult to detect using conventional methods. 
AI-powered vision systems, whether mounted 
on UAVs, retrofit tractors, or embedded in 
smartphones, now provide near–real-time disease 
detection. 
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AI also plays a central role in responding to these 
risks by linking detection outputs to dynamic, 
operations-level decisions. In Smart Droplets, for 
instance, these visual insights are fed directly into 
Digital Farm Twins, where layers of canopy health, 
droplet deposition, and soil moisture (among 
others) can be integrated to simulate how risks 
evolve in space and time. By forecasting chemical 
drift under changing environmental conditions, 
digital twins along with multimodal AI can serve 
as predictive tools that alert stakehodlers to risks 
affecting water bodies, pollinator habitats, or 
adjacent food-producing areas before incidents 
occur.

What are the main challenges in deploying AI 
for resilient food systems?

The primary challenges in deploying AI for resilient 
food systems stem from issues of data quality, 
availability, and representativeness. Most actors 
still face limited labelled datasets, uneven data 
governance, and highly heterogeneous field 
conditions. Models trained on one crop, region, 
or season often fail in another due to distribution 
shifts, label noise, and rapidly changing pathogen 
ecologies. Smartphone-based systems or 
precision-spraying workflows in Smart Droplets, 
therefore, require extensive field trials across 
variable canopies, climates, and imaging conditions 
to ensure reliability.

A second major challenge lies in building 
interoperable, trustworthy, and continuously 
updated data ecosystems that allow AI models to 
remain robust over time. The Common European 
Agricultural Data Space (CEADS) aims precisely 
to address today’s fragmentation by enabling 
secure sharing of farm, industry, and public data 
with harmonised connectors, vocabularies, and 
governance, prerequisites for training models that 
generalise across borders and seasons (Stefanidou 
et al., 2025).

What does trustworthy AI look like in the 
context of food safety?

Trustworthy AI in food safety requires systems 
that are transparent, auditable, and scientifically 
interpretable throughout their entire lifecycle. 
Under the EU AI Act , high-risk agricultural 
applications, such as automated disease detection 
or adaptive spraying, must demonstrate rigorous 
risk management, traceability and human 
supervision while maintaining auditable data 
processing and defining clear human-in-the-loop 
checkpoints, particularly when AI decisions may 
affect chemical applications.

Equally essential is explainability; AI models must 
reveal why they make specific recommendations, 
in ways that align with biological reality and can be 
inspected by farmers, cooperatives, and regulators. 
Techniques such as Grad-CAM (Selvaraju et al., 
2016) allow computer-vision systems in Smart 
Droplets or NextGenBioPest to highlight the 
specific canopy regions, lesions, or grape clusters 
that triggered a classification or a spraying 
adjustment.

How can AI support cross-border coordination 
and data sharing to enhance food system 
resilience?

AI can enhance cross-border coordination by 
promoting the agricultural sector toward shared 
data standards and infrastructures that facilitate 
the seamless flow of information. As AI systems for 
disease detection, precision spraying, and digital-
twin modelling become more widespread, they 
expose the need for accelerating the development 
and adoption of the Common European Agricultural 
Data Space (CEADS), which is expected to provide 
a secure, interoperable backbone for exchanging 
agronomic, environmental, and regulatory data 
across Member States. 
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CEADS’ governance frameworks ensure that 
heterogeneous AI systems, from smartphone 
disease detectors in NextGenBioPest to tractor-
mounted computer-vision systems in Smart 
Droplets, can operate beyond local silos while 
preserving traceability, privacy, and data 
protection. Moreover, imagery and sensor data 
captured by drones, smartphones, and spraying 
platforms can be ingested into CEADS-compatible 
Farm Management Information Systems (FMIS) 
(Fountas et al., 2015), enriching digital twins with 
cross-regional context on disease pressure, canopy 
structure, spray deposition patterns, and soil 
moisture.

Looking ahead to 2035, what breakthrough 
would you like to see in AI for resilient food 
systems?

By 2035, a breakthrough would be the deployment 
of multimodal digital twins that continuously 
ingest heterogeneous data streams (e.g., field 
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K., Ijaz, M.F., & Woźniak, M. (2021). A Survey of Deep 
Convolutional Neural Networks Applied for Prediction 
of Plant Leaf Diseases. Sensors (Basel, Switzerland), 21.

•	 Espejo-García, B., Güldenring, R., Nalpantidis, L., 
& Fountas, S. (2025). Foundation vision models in 
agriculture: DINOv2, LoRA and knowledge distillation 
for disease and weed identification. Comput. Electron. 
Agric., 239, 110900.

•	 Fountas, S., Carli, G., Sørensen, C.A., Tsiropoulos, Z., 
Cavalaris, C., Vatsanidou, A., Liakos, B., Canavari, M., 
Wiebensohn, J., & Tisserye, B. (2015). Farm management 
information systems: Current situation and future 
perspectives. Comput. Electron. Agric., 115, 40-50.

•	 Fountas, S., Espejo-García, B., Kasimati, A., Gemtou, M., 
Panoutsopoulos, H., & Anastasiou, E. (2024). Agriculture 
5.0: Cutting-Edge Technologies, Trends, and Challenges. 
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sensors, UAV imagery, hyperspectral cameras, 
soil and water probes, omics assays, and pesticide 
residue analytics) to infer the causal links between 
agronomic practices and food safety, biodiversity, 
and yield outcomes in the long term. Unlike task-
specific models, these multimodal AI systems in 
the context of Agriculture 5.0 (Fountas et al., 2024) 
and foundation models (Espejo-Garcia et al., 2025) 
would align spatial, visual, temporal, and biological 
modalities through shared embeddings, enabling 
robust cross-domain reasoning. This way, digital 
twins would act as cognitive ecosystems, simulating 
alternative Integrated Pest Management (IPM) 
strategies while dynamically quantifying trade-
offs among efficacy, environmental persistence, 
carbon footprint, and ecological impact. Moreover, 
they would generate auditable, explainable reports 
that conform to the EU AI Act, ensuring that every 
prescription or simulation is traceable, justifiable, 
and reproducible.
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Kiel University

Authors: 
Professor Dr. Martina Gerken
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Dr. Igor Titov, Researcher

Faculty of Engineering
Nicholas Enders, Researcher

Institute for Innovation Research

How can predictive AI technologies strengthen 
resilience in food systems or related domains?

Predictive AI enables smarter decisions in farming 
by forecasting crop needs - such as fertilisation, 
irrigation, and plant protection - based on soil, 
weather, and satellite data. This reduces input waste, 
improves yield stability, and lowers environmental 
impact. It also enhances food system resilience 
by reducing reliance on non-renewable resources 
and minimizing exposure to climate variability. 

AI can forecast pest outbreaks or disease risks 
from weather and historical patterns, stabilizing 
production and limiting price shocks. To be 
effective, all such models rely on timely, site-
specific field data. New sensor technologies 
under development, such as automated in-soil 
lab-on-a-chip systems, can address this data gap 
by providing continuous, high-quality nutrient 
measurements, enabling real-time decisions and 
better AI model performance.

What technical or organisational barriers 
limit the deployment of predictive AI in food 
systems or similar contexts?

A major barrier is the lack of suitable sensors 
for key factors such as plant-available nutrients, 
soil biology, and plant health. Manual sampling 
and laboratory testing are labour-intensive and 
infrequent, resulting in sparse datasets with limited 
resolution. Harsh outdoor conditions often cause 
data gaps and equipment failures. 

Additionally, there is poor interoperability across 
fragmented IT systems, each using different 
formats and classifications. The complexity of 
biological systems - with non-linear, time-delayed, 
and adaptive responses - makes modelling 
challenging, especially with limited data. AI tools 
also require processing power and connectivity, 
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which are often unavailable in rural areas. Finally, 
digital systems can be costly, and the value they 
generate may not directly benefit the data provider, 
limiting adoption.

What are the key enablers and barriers for data 
sharing in the food industry, and how can AI 
help?

Data sharing is hindered by technical, economic, 
and organisational barriers. Heterogeneous data 
models and formats across IT systems othen result 
in loss of meaning during transfer. Large players 
benefit from vendor lock-in and lack incentive 
to open up. Farm-level data are  costly to collect 
and may benefit downstream actors more than 
farmers, discouraging participation. AI could play 
a role by translating between data formats and 
lowering integration costs, but only if underlying 
models are accessible. Privacy regulations such 
as the GDPR also restrict the use and transfer of 
personally identifiable data. A trusted governing 
body is required to harmonise data standards 
and ensure fair, secure use across the value chain, 
balancing costs and benefits to all stakeholders.

How do you approach explainability and trust 
in AI systems used for risk prediction?

Transparency in AI models is crucial for building 
user trust, particularly in agriculture where 
decisions directly affect livelihoods. A key strategy 
is using verifiable data sources. At Kiel University, 
we are developing a buried lab-on-a-chip system 
that generates time-series data on plant-available 
nutrients, enabling AI models to be trained on 
trustworthy ground-truth data. Beyond data 
quality, explainability also depends on model 
design and communication. Models should 
include mechanisms to visualise trends, identify 
outliers, and demonstrate how input changes 
affect outputs. Highlighting year-on-year trends 
or comparing sensor locations can help users 
interpret the system and foster confidence in 
decision support tools - especially when users 
maintain oversight of the outcomes.

What considerations guide the design 
of sustainable AI infrastructure in your 
organisation or field?

Sustainability in digital agriculture involves 
balancing functionality, energy use, and long-
term accessibility. AI models should be efficient 
and tailored to their operational environment. In 
the field, limited power and connectivity make 
lightweight models and edge computing critical. 
At Kiel University, we design sensor platforms 
to be low-maintenance, buried beneath the 
surface, and compatible with field machinery. Our 
infrastructure choices also consider the long-term 
total cost of ownership. On the software side, we 
prioritise interpretable models and visual tools that 
help users understand outcomes. Sustainability 
also includes data ethics and openness: reusable 
models and open APIs can help avoid redundant 
development and promote broader system 
integration.

Looking ahead to 2035, what breakthrough 
would you like to see in AI for resilient food 
systems or cross-sector collaboration?

By 2035, we envision widespread use of real-time 
sensor networks combined with remote sensing 
and AI to deliver precision recommendations 
tailored to specific crops, soils, and climates. 
Affordable, autonomous sensor technologies will 
make it economically viable to collect the dense, 
high-quality data AI models require. AI-based 
translation systems will improve interoperability 
across platforms, actors, and borders. We also 
anticipate more public infrastructure,  such as 
government-backed cloud services, to reduce 
dependency on private providers and ensure 
compliance with data protection regulations. 
Ideally, breakthroughs in explainable AI will make 
complex models understandable to all users, 
bridging the gap between decision support and 
farmer intuition in an increasingly digital food 
system.
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How can predictive AI technologies strengthen 
resilience in food systems or related domains?

Optical sensing technologies rapidly penetrating 
into the Precision Agriculture (PA) domain, offering 
a wealth of new types of data, that were not 
previously available to farmers, agronomists and 
researchers. Predictive AI technologies are now 
envisioned (and in some cases already applied) 
to interpret and translate these optical sensing 
data into simple and perceivable parameters for 
immediate and reliable monitoring of the crops 
and the field. 

The multi-parametric sensing and risk evaluation 
processes may include early detection of pest 
threats, adjustment of fertilisation in terms of 
macro- or micro-nutrients, or monitoring of abiotic 
stresses of plants and trees. Such multi-parametric 
data analyses powered by computational and 
machine learning tools, shift Agriculture from 
the traditional empirical mode into the Precision 
“AI-powered decision support and sensor fusion” 
mode, saving natural and cultivation resources, 
also reducing major cultivation risks, which can 
downgrade both the quality and quantity of crop 
yield. 

The principal idea will be to use optical sensing 
technologies together with Predictive AI models 
not for formulating crucial decisions, but for 
assisting the end users in reducing the uncertainty 
of the decisions taken.

What technical or organisational barriers 
limit the deployment of predictive AI in food 
systems or similar contexts?

A major issue hurdling the wider deployment of 
Predictive AI in optical sensing subsystems and 
methods employed in the modern agricultural 
sector is the lack of standardisation covering 
both hardware and data management systems. 
This lack of standardisation is related to the 
rapid penetration of several new optical sensing 
technologies into the Precision Agriculture field, 
also with the difficulty of translating and correlating 
crucial agricultural parameters (i.e. pesticide 
residue levels) with specific optical quantities. 

The fusion of data obtained from different optical 
sensing platforms and protocols into unified risk 
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prediction toolkits using Prediction AI models still 
remains a challenge, since the type and particular 
characteristics (i.e. temporal distribution, accuracy, 
etc.) of the data available, may lead to conclusions 
that are predominantly based on the interpretation 
method, yet based less on the measurements 
obtained on the physical (sensor) layer. 

What are the key enablers and barriers for data 
sharing in the food industry, and how can AI 
help?

Optical sensing technologies, especially those 
based on fibre-optic sensors, provide point 
measurements in agricultural fields, requiring 
deployment over a grid for accumulating 
substantial sampling for a single user. It is obvious 
that the monitoring of a wider agricultural area, 
covering for instance a region assigned as a 
Protected Designation of Origin, requires an 
extended network of sensing points, which may be 
distributed along different users; there data sharing 
is inevitable for creating necessary databases. 

Privacy-preserving AI, including blockchain 
protocols, can support the sharing of specific types 
of data between end users and network moderators 
(i.e cooperatives), without compromising privacy 
rules or disclosing sensitive cultivation practices. 
The same Privacy-preserving AI can be employed 
for diluting and integrating the data available into 
a greater model of higher validity, being broadly 
available so interested end users can access it to 
cross-check the measurements of their sensing 
points and consolidate results.

How do you approach explainability and trust 
in AI systems used for risk prediction?

A catalyst that will boost the adoption of optical 
sensing technologies into the Precision Agriculture 
by a large number of farmers and agronomists will 
be the establishment of trust and transparency 
across both the optical layer and the AI signal 

processing technologies used. The optimum way 
to enhance trust of among end users of these 
emerging technologies is through their association 
with and validation against realistic, success cases. 

Therefore, these new hardware and AI analysis 
technologies should be thoroughly validated in 
real field cultivation cases, involving a human-
in-the-loop mode, and showcasing tangible,  
measurable benefits for the main stakeholders. 
The credibility of those test cases and the relevant 
risk assessment performed using AI models may 
be undertaken by independent organisations, for 
example, international research centres or large 
scale cooperatives, while involving domain experts 
with sound knowledge in photonics, AI and 
agronomy. 

Agricultural resources (i.e. equipment, fertilisers 
or pesticides) and other high tech (i.e. photonic 
components manufacturers) may also be involved 
as beneficiary players while populating a broader 
value chain.

What considerations guide the design 
of sustainable AI infrastructure in your 
organisation or field?

Precision Agriculture deploys along three main 
sustainability priorities: efficient use of  resources, 
improvement of final agricultural product quality 
for consumers, and cultivation with minimal 
environmental impact. These priorities can be 
further implemented into the framework of circular 
economy, tailored to each crop, area, agricultural 
practices and business model. 

Optical sensing technologies can readily serve 
all these three sustainability priorities, however, 
the fusion of the optical sensing data into a 
sustainability-oriented cultivation and business 
model is not yet straightforward. The key challenge 
relates to the profit margin generated for the 
farmer either operating in a personal or cooperative 
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business model, without compromising 
sustainability priorities, and without significantly 
disturbing other parts of the value chain (i.e. final 
consumer or agrochemical companies). Thus, a 
more generalised profit-sustainability AI model 
should be implemented, seamlessly fitting to 
the hardware technologies and business models 
available.          

Looking ahead to 2035, what breakthrough 
would you like to see in AI for resilient food 
systems or cross-sector collaboration?

Precision Agriculture comes to change the way we 
cultivate, produce, certify, transport and sell crops. 
Sensing technologies, including those of optical 
sensing, are cornerstone components into PA, with 
the sensing data obtained dominating most parts 

of the extended and cross-sectorial value chain of 
Agro-food. Future AI models should operate for 
generating win-win opportunities for all players 
involved in this value-chain, especially for farmers 
that are exposed to frequent and unpredictable 
cultivation and financial risks. 

A generalised AI model should cover the whole 
ecosystem of Agrofood sector, bringing closer all 
players involved, while providing transparency of 
operations and transactions, allowing trustworthy 
tracking of the products from Farm to Fork. Such a 
comprehensive AI model could secure crop quality, 
ensure fair profit for all player involved, sustainability 
practices and timely availability of the products to 
the markets, while avoiding disruptions, which can 
lead to scarcity of products, and price volatility.    
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