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Coordinator of the European Food Fraud Community of Practice (EFF-CoP)

Leader of the EU Cluster for Food Traceability and Trust

Let us begin fromm a food-system perspective.
On a winter morning in March 2023, a batch of
baby-leaf spinach left a greenhouse near The
Hague, crossed two borders, and was expected
to reach the Riviera within 30 hours. Forty-five
minutes before unloading, an alert appeared
on the logistics dashboard: a temperature
excursion of 2.8 °C had occurred during transit
through southern France, leading to accelerated
bacterial proliferation and an estimated 18 %
increase in the likelihood of Listeria growth.
Within minutes, the shipment was diverted to a
processor for blanching rather than entering the
fresh-produce supply chain. The incident never
reached consumers or the media. This near-miss
illustrates a structural shift in food safety: artificial
intelligence (Al) is increasingly enabling risks that
once triggered recalls to be anticipated, detected,
and mitigated in real time.

This discussion paper, Al for Resilient Food
Systems and Risk Intelligence, brings together
insights from Horizon Europe projects—including
EFRA (Extreme Food Risk Analytics), HACID
(Hybrid Human-Artificial Collective Intelligence
in Open-Ended Decision Making), OASEES (Open
Autonomous Programmable Cloud Applications
and Smart Edge Sensors), and PLIADES (Al-
Enabled Data Lifecycle Optimisation and Data
Spaces Integration) alongside contributions from
leading research organisations. Together, they
examine how Al can strengthen food safety and
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system resilience through improved decision-
making, early risk detection, cross-border
coordination, and responsible deployment. They
also articulate a forward-looking perspective on
the role of Al in food systems towards 2035.

Across contributions, a common conclusion
emerges: modern food systems must move
beyond predominantly preventive and reactive
models towards resilient systems capable
of absorbing, adapting to, and acting upon
disruptions before they escalate. The collection
spansthe full food chain, from primary production
and precision agriculture to processing, logistics,
climate services, and regulatory governance,
demonstrating how Al can convert fragmented
data into actionable risk intelligence. Contributors
consistently emphasise predictive, explainable,
and privacy-preserving Al as prerequisites for
early warning, anticipatory intervention, and
coordinated responses to transboundary threats.
Recurrent themes include interoperable data
spaces, digital twins and multimodal sensing for
hazard forecasting, and the necessity of robust
governance frameworks, human oversight, and
shared standards to ensure trustworthy scaling.

Re-addressing the food system perspective,
classic food-safety and authenticity management
relies on mManagement systems, retrospective
epidemiology, periodic audits, and batch-based
testing. While indispensable, these instruments
are largely preventive or retrospective and offer

s
.
EDITEDBY Agroknow



DICSUSSION PAPER

Al for Resilient Food Systems and Risk Intelligence

limited capacity for real-time intervention. Al
extends this framework in two complementary
directions.

Firstly, early risk detection: Al models trained on
multimodal sensor data—including spectroscopy,
genomic outputs, and environmental variables—
can detect deviations well before they become
operationally visible. In the spinach example, a
recurrent neural network could continuously
evaluate temperature trajectories against
pathogen growth models, updating the
conditional probability of microbial outgrowth in
real time.

Secondly, predictive analytics: Al systems
integrating agronomic, climatic, trade, and
behavioural signals can forecast disruptions such
as mycotoxin outbreaks or logistical bottlenecks
weeks in advance. Rather than identifying
isolated failures, these models characterise
disturbance pathways, allowing stakeholders
to adjust sourcing, processing, or distribution
strategies proactively.

A recurring insight in this collection is that
resilience is not primarily a technological artefact,
but an emergent property of connected systems.
Yet food-system data remain highly fragmented:
sensor data are proprietary, transactional data are
siloed, and laboratory results are often locked in
static formats. Several European projects address
this challenge by making it possible to connect
and use different types of data together, even
when they come from incompatible systems.

The resulting transparency does more than
improve analytics; it reshapes trust relationships
among producers, regulators, and consumers.
Resilience is realised when predictive insights
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trigger coordinated action across the supply
chain, rather than remaining confined to
individual actors.

At the same time, limitations need to be
considered too. Al performance is constrained
by data quality and representativeness; models
optimised for European value chains may not
transfer to smallholder or resource-limited
contexts. Expanded sensor deployment raises
concerns about e-waste, while large-scale
computation carries energy costs. Most critically,
asymmetric data ownership risks reinforcing
existing power imbalances, particularly for actors
at the beginning of the supply chain.

Al should therefore be understood not as an
endpoint, but as a catalyst within a continuous
cycle of sensing, anticipating, learning, and
governance. The transition from reactive to
resilient food systems is not merely a technical
upgrade; it reflects a cognitive shift, i.e. from
assumptions of stability to expectations of
disruption, and from siloed optimisation to
collective risk management. In this light, the
spinach consignment that quietly changed
course on a cold March morning represents
more than an isolated logistics decision. It
signals the emergence of a food system in which
farms, vehicles, laboratories, and regulators
are increasingly connected through shared
intelligence, enabling risks to be addressed
before they materialise. The contributions in
this issue invite critical engagement with this
transition: its methods, its limitations, and its
ethical implications while advancing the shared
goal of preventing tomorrow’s food crises before
they even begin.
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Note from the Editor

Author
Dr. Babis Thanopoulos

Agroknow, Greece
EFRA Coordinator

Europe’s food systems are entering a decisive
decade. Climate volatility, globalised supply
chains, emerging biological threats, and
rapidly evolving production environments are
reshaping how risks arise and how they must
be managed. At the same time, the European
Commission’'s Horizon Europe programme
places strong emphasis on food safety,
sustainability, data governance, and trustworthy
Artificial Intelligence, calling for integrated,
anticipatory, and science based approaches
that strengthen resilience across the entire
Farm to Fork continuum. This EFRA Discussion
Paper brings together expert contributions from
leading European universities, research centres,
innovation projects, and food safety applications,
offering a rich and multidisciplinary perspective
on how Artificial Intelligence can support this
transition.

These perspectives align closely with the mission
of EFRA, which explores how extreme data
mining, aggregation, and analytics can address
the scientific, economic, and societal challenges
associated with food safety and quality.
EFRA's objectives, which include discovering
and distilling food risk data from dispersed
sources, designing human centred interfaces,
demonstrating trustworthy, accurate, green, and
fair Artificial Intelligence, and integrating big data,
internet of things technologies, and advanced
analytics, mirror the European Commission's
priorities for data driven innovation, transparency,
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and responsible Artificial Intelligence adoption.
EFRA's three pillars, the Data Hub, the Analytics
Powerhouse, and the Data and Analytics
Marketplace, reflect Horizon Europe's vision for
interoperable data spaces, high impact analytics,
and open innovation ecosystems where data
holders, innovators, and decision makers
collaborate to safeguard the food we eat.

A central message emerging from this Discussion
Paper is the strong alignment between
EFRA's work and the European Commission’s
priorities for Artificial Intelligence in food safety.
The Commission emphasises the need for
trustworthy, human centric, and transparent
Artificial Intelligence systems, interoperable
and sovereign European data spaces, early
warning and predictive capabilities for emerging
risks, and sustainable, resource efficient digital
infrastructures that support the Farm to Fork and
Green Deal objectives. EFRA’s focus on extreme
datadiscovery,explainable and privacy preserving
analytics, cross border data interoperability, and
human in the loop decision support directly
responds to these priorities and contributes to
the ambition of building a resilient, anticipatory,
and science based food safety system for Europe.

Across the nine position statements, several
shared themes emerge that resonate strongly
with Horizon Europe priorities. Contributors
emphasise the growing importance of predictive
Artificial Intelligence for anticipating hazards
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before they escalate, whether through plant
level disease detection, optical sensing, anomaly
monitoring in robotics, climate risk intelligence,
or hazard analysis and critical control point
based risk forecasting. This shift from reactive to
anticipatory risk management directly supports
the Commission’'s goals for early warning
systems, crisis preparedness, and climate
adaptation. Many highlight the need for high
quality, interoperable, and FAIR data, noting that
fragmented datasets, inconsistent standards,
and limited real time monitoring remain major
barriers to effective risk prediction. Their insights
align with the development of European level data
infrastructures such as the Common European
Agricultural Data Space, the Green Deal Data
Space, and the European Open Science Cloud.

Trustworthiness is another recurring priority.
Experts across domains stress that Artificial
Intelligence systems must be transparent,
interpretable, uncertainty aware, and auditable,
especially when they support decisions with
regulatory or safety implications. This reflects the
requirements of the European Union Artificial
Intelligence Act, which mandates traceability,
human oversight, robustness, and fairness
for high risk Artificial Intelligence systems.
EFRA's focus on explainable, privacy preserving,
and environmentally responsible Artificial
Intelligence directly contributes to this European
agenda. Several contributions also underline the
importance of sustainable and energy efficient
digital infrastructures, highlighting lightweight,
resource efficient Artificial Intelligence
architectures capable of operating reliably in
constrained environments. This aligns with
Horizon Europe's commitment to green digital
transformation and the need to ensure that
Artificial Intelligence adoption does not increase
environmental burdens.

Cross border cooperation and federated
intelligence emerge as essential components of
future food system resilience. Food safety risks
and climate hazards do not respect national
boundaries, and contributors highlight the need
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forprivacypreservinganalytics,federatedlearning,
and interoperable governance frameworks that
enable collaboration without compromising data
sovereignty. These ideas reflect the Commission’s
priorities for European data spaces, cross border
early warning networks, and coordinated
risk management. Several statements also
emphasise the importance of hybrid human and
Artificial Intelligence supported decision making,
combining computational power with human
expertise, in line with the European Union'’s vision
for human centric Artificial Intelligence.

Looking ahead to 2035, the visions presented
in this paper are ambitious yet grounded.
They include real time sensor networks for
precision agriculture, hybrid human and Artificial
Intelligence systems for climate risk intelligence,
federated European food data spaces, multimodal
digital twins of the food system, and cross sector
Artificial Intelligence ecosystems capable of
detecting anomalies, forecasting disruptions,
and coordinating responses across borders.
These visions reflect a shared belief that resilience
will increasingly depend on anticipatory, data
driven, and collaborative intelligence supported
by trustworthy Artificial Intelligence and robust
governance frameworks.

Together, the nine contributions offer a
compelling roadmap for how Europe can
harness extreme data analytics and Artificial
Intelligence to strengthen food system resilience.
They demonstrate that progress will depend not
only on technological innovation, but also on
governance, interoperability, sustainability, and
human centred design, all of which are central
pillars of Horizon Europe. As EFRA continues
to engage public and private stakeholders, the
collaborative spirit reflected in this Discussion
Paperwill be essential forrealising the full potential
of Artificial Intelligence in safeguarding Europe's
food systems. By aligning scientific excellence
with European values of trust, transparency,
sustainability, and fairness, EFRA contributes to a
future where food safety is proactive, data driven,
and resilient by design.
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National Technical
University of Athens
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Professor Konstantina S. Nikita

Maria Athanasiou, Postdoctoral Researcher
Biomedical Simulations and Imaging Laboratory,
School of Electrical and Computer Engineering (BioSim)

Where can Al add the most value in food safety
decision-making?

Al offersthe greatest value where decisions depend
on integrating diverse, rapidly evolving information
streams. In the context of food safety, decision-
making is hindered by multi-layered global supply
chains, heterogeneous data formats, dynamic
environmental and market conditions, regulatory
variation, and multifactorial risks that interact in
complex ways. Weak or diffuse early signals often
go unnoticed because surveillance still relies on
manual reporting, isolated laboratory results, or
static risk assessments unable to reflect real-time
system variability. As a result, critical operational
and regulatory tasks, including prioritising
inspections, tracing contamination pathways,
validating supplier compliance, assessing supply-
chain vulnerabilities, or triaging high-risk products,
remain slow and reactive. Data fragmentation,
inconsistent standards, limited real-time
monitoring, sparse contextual metadata, and poor
integration across environmental, microbiological,
trade, and behavioural datasets further reduce
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situational awareness and restrict the ability to
anticipate cascading disruptions across the food
system.

Al can bridge these gaps by fusing multimodal
data into coherent early-warning intelligence.
Techniques including graph-based models can
map and propagate risk across supply chains,
deep learning can detect anomalies or foreign
objects, and probabilistic, uncertainty-aware
models can indicate when interventions are
needed. Generative and representation-learning
approaches can enrich sparse datasets and
reveal latent risk factors, while the combination of
mechanistic knowledge with machine learning
methods can guide the development of risk-
informed strategies, providing scenario analysis for
climate-driven hazards, geopolitical disruptions,
emerging pathogens, or supply-chain stressors. At
the operational level, Al-driven pipelines support
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Position Statement from BioSim

automated food classification, quality grading,
fraud detection, and contamination screening,
reducing dependence on resource-intensive
laboratorytesting. By enabling earlier interventions,
reducing economic losses from outbreaks and
recalls, and improving overall system resilience,
Al transforms food safety from reactive incident
management into anticipatory, risk-intelligent
decision-making, grounded in timely, evidence-
based insights that benefits regulators, producers,
and consumers alike.

How is Al helping detect and respond to
emerging risks in your sector?

Across the health sector, Al has become a central
tool for strengthening early detection, surveillance,
and adaptive response. Its role has expanded from
traditional analytics to sophisticated applications,
including real-time outbreak monitoring, risk
prediction, personalised  diagnostics, and
treatment optimisation. The recent acceleration of
digital innovation, driven in part by the COVID-19
pandemic, has brought forward cutting-edge
approaches including generative Al agents for
rapid evidence synthesis, knowledge graphs
for linking heterogeneous biomedical data,
continual learning systems that adapt to evolving
conditions, and increasingly mature explainable
and trustworthy Al methodologies.

Within this broader landscape, our research
focuses on disease modelling and developing
reliable and robust adaptive frameworks for the
prognosis, diagnosis,and management of complex
diseases. In this direction, we fuse multimodal
clinical, physiological, behavioural, molecular, and
environmental data using physiology-informed
mathematical models,advanced machinelearning
and deep learning, interpretability techniques,
uncertainty quantification, and bias mitigation and
domain adaptation methods. These approaches
address critical challenges related to the clinical
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adoption of Al-based systems - trustworthiness,
interpretability, generalisability, and fairness - and
have been applied to diabetes, cardiovascular
conditions, neurodegenerative diseases, cancer,
and COVID-19, demonstrating strong capability in
detecting evolving and multimodal risk signals.

For example, our LSTM-based influenza-like illness
forecasting system combined surveillance data,
weatherconditions,and Twitteractivityand showed
that multimodal fusion significantly outperforms
single-source models. Similarly, our drift-adaptive
COVID-19 detection framework, our interpretable
Alzheimer's disease diagnostic models, and
our uncertainty-aware adaptive frameworks for
cardiovascular risk stratification illustrate how
integrating heterogeneous data with advanced Al-
driven modelling approaches enhances detection
sensitivity and adaptive response. These same
principles are directly transferable to food safety
for identifying emerging contamination routes,
environmental stressors, supply-chain anomalies,
or behavioural drivers of risk in real time.

What are the main challenges in deploying Al
for resilient food systems?

Al deployment for resilient food systems is
constrained by a combination of technical,
organisational, and governance challenges. On the
technical side, data remain highly fragmented and
heterogeneous, originating from microbiological

analyses, sensor networks, climate models,
logistics records, and behavioural sources,
often with incompatible formats, inconsistent

ontologies, and limited contextual metadata. This
lack of interoperability makes it difficult to integrate
information across the supply chain, while sparse
real-time monitoring and uneven data quality
hinder the development of reliable and adaptive
early-warning systems. Models often struggle with
generalisability as food systems evolve - changes
in supply-chain behaviour, pathogen dynamics, or

]
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environmental conditions can trigger performance
drift. In this context, the lack of mechanisms for
drift detection and model adaptation results in
degraded performance as patterns shift over time
and/or across domains.

Trustworthiness is another key barrier: although
regulators and industry stakeholders require
interpretability and confidence estimates to assess
the reliability of model outputs, many current tools
remain opaque, providing point estimates without
transparent reasoning or confidence measures. At
the organisational level, uneven digital maturity,
limited analytical expertise, and the difficulty of
embedding Al into existing inspection and quality-
assurance workflows hinder effective adoption.
Governance challenges further pronounce these
issues, particularly around regulatory compliance,
as organisations must navigate evolving
requirements, including robustness, fairness,
accountability, and human oversight under the EU
Al Act, while balancing data-sharing constraints
linked to confidentiality, commercial sensitivity,
and GDPR.

Progress in resilient food systems depends on
domain-specific  infrastructures,  trustworthy
modelling, and  collaborative  governance.
Harmonised standards and practical data-sharing
mechanisms must enable safe exchangeacrossthe
supply chain, while drift detection, interpretability,
and fairness are built into Al design.

What does trustworthy Al look like in the
context of food safety?

Trustworthy Al is built on four foundational pillars -
interpretability, uncertainty awareness, robustness,
and fairness - supported by regulatory compliance
and meaningful human oversight. These principles
ensure that Al systems behave transparently,
reliably, and safely in high-stakes environments.
In food safety, interpretability means that models
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must provide clear, traceable explanations of risk
alerts so inspectors and regulators can understand
the underlying evidence. Interpretability
techniques widely adopted in various domains
including feature attribution, surrogate models,
counterfactual explanations, and rule-based
components, can be directly applied to make food-
safety predictions understandable and auditable.

Uncertainty awareness ensures that Al systems
communicate how confident they are in a
prediction, allowing authorities to distinguish
high-confidence alerts from cases where human
review is needed: Bayesian inference, ensembles,
or Monte Carlo dropout provide explicit
confidence measures that prevent over- or under-
reaction. Robustness requires models to remain
reliable as supply-chain patterns, pathogens, or
environmental drivers evolve. Various approaches
for drift detection, continual learning, and domain
adaptation have been proposed to address such
challenges and can be leveraged in the field of
food safety.

Bias-mitigation strategies, such as balanced
sampling, bias audits, algorithmic modifications,
and counterfactual analyses, can help prevent
systematic disparities in food-safety decisions,
ensuring consistent performance across regions,
production systems, and product categories.
By operationalising these pillars through well-
validated methodologies, Al systems in food safety
can become transparent, adaptive, scientifically
grounded, and suitable for regulatory and industry
use.

How can Al support cross-border coordination
and data sharing to enhance food system
resilience?

Al can strengthen cross-border coordination
by enabling data harmonisation, shared digital
infrastructures, secure information exchange,

]

. .
EDITEDBY Agroknow



DICSUSSION PAPER

Al for Resilient Food Systems and Risk Intelligence

Position Statement from BioSim

shared early-warning intelligence, and coordinated
response mechanisms. Al systems can harmonise
heterogeneous datasets through automated
ontology mapping, knowledge graphs, and
multimodal fusion, allowing environmental,
microbiological, trade, and logistics data from
different countries to become interoperable.
Progress depends on common data standards
and shared infrastructures, including unified
terminologies, metadata schemas, reporting
formats, and connectivity frameworks that allow
Al tools to operate reliably across jurisdictions.

Effective coordination also requires digital
readiness, ensuring all countries have the capacity,
governance  structures, and  technological
foundations to engage in cross-border data
sharing. Privacy-preserving technologies such
as federated learning and differential privacy can
enable collaborative model development without
exposing sensitive commercial or personal data.
Al-driven traceability systems, powered by loT
sensors, blockchain, and digital product passports,
are able to enhance real-time cross-border visibility
and support rapid, coordinated recalls.

Shared early-warning models that integrate
climate indicators, pathogen dynamics, supply-
chain signals, and trade flows can detect
transnational threats and support joint assessment
and response. Underpinning these capabilities are
collaborative governance frameworks that define
responsibilities, ensure accountability, support
safe data sharing, and institutionalise long-term
cooperation. Together, these components enable
an integrated, intelligence-driven approach to
food-system resilience at regional and global scale.
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Looking ahead to 2035, what breakthrough
would you like to see in Al for resilient food
systems?

By 2035, a transformative breakthrough would
be the adoption of adaptive multimodal risk-
intelligence platforms that can reliably forecast
emerging food-system threats before they
materialise. Such platforms would integrate
sensor data, laboratory findings, climate signals,
and supply-chain dynamics into a unified digital
environment, powered by explainable models
that continuously recalibrate as conditions evolve.
Rather than static dashboards, thiswould resemble
a dynamic digital twin of the food system, capable
of running scenario simulations, stress-testing
vulnerabilities, and guiding targeted interventions
with traceable reasoning.

Realising this vision will depend not on producing
more Al tools, but on building the foundations that
make such platforms reliable: high-quality and
interoperable data, robust, transparent model-
validation frameworks, and regulatory capacity
to evaluate adaptive, uncertainty-aware systems.
Experience from healthcare - where multimodal
fusion, advanced Al-driven analytics, drift-adaptive
diagnostics,and rigorousvalidation already support
complex decision-making - shows how such a
paradigm can be made operational. Bringing
this approach to food safety would enable a shift
from episodic surveillance to predictive resilience,
empowering decision-makers with anticipatory,
scientifically grounded intelligence.
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HACID Coordinator

Authors:
Anrijs Abele
Neha Mittal
Fai Fung

Where can Al add the most value in food safety
decision-making?

Climate change is exerting profound pressure on
global food systems, exposing them to increasingly
frequent and severe hazards such as prolonged
droughts, extreme rainfall, soil degradation, and
the emergence of new pests and pathogens.
These disruptions reveal a structural vulnerability:
traditionally, food systems have relied on reactive
approaches, responding to shocks only after they
materialize.

In recent years, climate services have emerged as
a domain dedicated to translating climate science
into actionable information and tools that support
informed, anticipatory decision-making. At the
sametime, artificial intelligence (Al) isreshaping the
capacity of climate services to move from narrow,
physical science-based analysis to comprehensive
climate risk intelligence. The HACID project (https://
www.hacid-project.eu) offers a timely example
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Met Office

of how hybrid human-Al systems can support
more resilient decision-making in this evolving
landscape.

Climate services can be broadly understood as the
processes and tools that transform raw climate
data into actionable, context-specific information
for decision-makers. This includes the production
of datasets based on observations and simulated
futures at seasonal to multi-decadal timescales
which are then interpreted, translated and
communicated to a wide range of audiences.

For food systems, climate services serve an
increasingly critical role by supporting farmers,
policymakers,andsupply-chainactorsin managing
both immediate and long-term risks. Seasonal

s
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Position Statement from HACID

forecasts currently inform planting choices and
irrigation planning; climate projections guide
the design of resilient infrastructure, cultivation
of climate resilient crop varieties and insurance
schemes; and hazard analyses illuminate how
climatic shifts may affect crop suitability, market
stability, and food safety. In essence, climate
services offer a bridge between complex climate
science and the diverse operational and long-term
strategic decisions required to safeguard food
system functioning.

How is Al helping detect and respond to
emerging risks in your sector?

The introduction of Al into climate services
strengthens this bridge in several important
ways. First, Al enhances the capacity to synthesise
the immense and rapidly expanding volume of
climate data produced by observational systems
and climate models. The latest CMIP6 ensemble
alone generates datasets so large and complex
that making sense of the available information is
increasingly impractical.

Second, Al supports predictive modelling across
multiple timescales, as well as downscaling global
and regional projections to obtain high-resolution
information. More accurate data means improving
early detection of risks such as drought onset,
detecting patterns like shifts in precipitation
regimes, or detecting relevant conditions
conducive to crop diseases. These capabilities
allow climate information to be used not only
descriptively but also prognostically, enabling
earlier and more targeted interventions.

Third, generative Al contributes to decision support
by structuring complex adaptation workflows,
exploring alternative scenarios, and helping users
evaluate the robustness of adaptation strategies
under uncertainty. When combined with human
expertise, Al can help reduce cognitive burdens,
limit bias, and increase the completeness of
assessments.
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What are the main challenges in deploying Al
for resilient food systems?

Despite these contributions, the deployment of
Al in climate services is not without challenges.
The fragmentation of climate, agricultural, and
socioeconomic datasets - both in terms of
availability and compatibility - continues to impede
integrated analysis, while issues of transparency
and explainability create barriers to trust, especially
when Al-generated outputs influence high-stakes
decisions.

The diversity of potential users - from smallholder
farmers to national/international policy makers
- means that climate services must be tailored
to differing capacities and contexts, raising
guestions about accessibility and usability. Ethical
considerations, including bias embedded in data
and the risk of privileging the needs of data-rich
regions, further complicate deployment.

Moreover, because food systems cross national
borders, the absence of harmonised governance
frameworks limits the ability of Al-driven climate
services to operate effectively at the transnational
scale required by global supply chains.

What does trustworthy Al look like in the
context of food safety?

The HACID project (Hybrid Human-Artificial
CollectiveIntelligencefor Decision SupportinOpen-
Ended Domains) directly addresses several of these
challenges by exploring how collective intelligence
- emerging from collaboration between human
expertsand Alagents - can support climate-related
decisions. HACID focuses specifically on climate
services, providing a decision support system (DSS)
that helps policymakers and organizations adapt
to uncertain future climate conditions. Central
to the project is the construction of an extensive
domain knowledge graph (DKQ) that integrates
climate projections, datasets endorsed by national
governments, and established methodologies

]
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for selecting and processing climate information.
This DKG maps the relationships among climate
models, hazards, indices, and methodologies for
climate information analysis, thus formalizing
complex reasoning processes that climate experts
typically undertake.

Within the HACID DSS, experts confronted with
a specific problem - such as change in surface
water flooding risk - identify and annotate relevant
elements of the DKG, drawing on their disciplinary
knowledge, and propose workflows that can lead
to the best risk assessment. Al agents operate in
parallel, proposing their own structured solutions
based on the knowledge resources, potentially
exploiting the wide diversity of methods and
approaches modelled in the DKG. The system
then synthesizes insights from all contributors,
producing a more comprehensive and transparent
pathwayforextracting relevantclimateinformation.
This hybrid approach enhances early detection of
emerging risks by surfacing connectionsthat might
be overlooked by individual experts and increasing
the diversity of approaches, while also providing
an auditable rationale for decision-making. It thus
supports a more resilient form of climate service
provision, grounded in both computational power
and human interpretative capacity.

How can Al support cross-border coordination
and data sharing to enhance food system
resilience?

Extending HACID to food safety and food system
resilience would require several next steps. The
knowledge base would need to incorporate
climate-sensitive food safety risks, such as
waterborne pathogen dynamics, contamination
pathways, and the effects of extreme weather
on storage environments, as well as food system
resilience, such as characterisation of abiotic and
biotic factors that influence crop productivity.

Strengthening cross-border coordination would
require interoperable governance frameworks to
ensure the secure, trustworthy exchange of climate
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and food safety data. Such integration is essential
because climate hazards that affect food safety
do not respect national boundaries, and supply
chains increasingly depend on synchronised risk
communication.

Moreover, embedding food safety regulatory
processes into the HACID DSS would help
ensure that recommmended adaptation strategies
align with existing inspection protocols, legal
frameworks, and operational workflows across
different jurisdictions. This alignment would
enhance trust in Al-supported decisions and
facilitate coordinated action across the food
system.

Looking ahead to 2035, what breakthrough
would you like to see in Al for resilient food
systems?

Looking ahead to 2035 a transformative
breakthrough would be the emergence of a globally
integrated, Al-enabled climate-risk intelligence
infrastructure dedicated to food systems. Such
an infrastructure would combine long-term
climate projections with real-time monitoring from
sensors, satellites, and supply-chain data streams
to provide risk narratives.

It would be capable of continuously detecting
emergent risks and opportunities  while
simulating alternative adaptation pathways and
recommending  context-appropriate  actions.
Importantly, this system would operate through
hybrid human-Al teams, ensuring that scientific
rigour, local knowledge, and ethical considerations
remain central.

Achieving such an infrastructure would represent
a decisive shift from reactive crisis management
to anticipatory governance of climate-resilient
food systems, aligning closely with the vision that
HACID is beginning to articulate.
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Where can Al add the most value in food safety
decision-making?

Although PLIADES does not target the food domain
directly, its architecture for full-data-lifecycle
optimisation and Al-enabled interoperable data
spaces demonstrates how complex distributed
data ecosystems can support evidence-based
decision-making. In food safety contexts, similar
approaches could be adapted to connect
inspection records, IoT sensor data, and logistics
tracking under shared semantics and governed
access rules. By enabling real-time linkage of
heterogeneous datasets, the PLIADES framework
offers a transferable model for shifting from
reactive to proactive food safety management, by
reducing the latency between data acquisition,
analysis, and strategic or operational decisions.

How is Al helping detect and respond to
emerging risks in your sector?

PLIADES develops Al-assisted mechanisms for
data quality monitoring, semantic alignment,
and integrity validation within interconnected
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and interoperable data spaces. These capabilities
ensure that information exchanged across sectors
remains consistent, reliable, and actionable -
conditions essential for early risk detection and
response. While PLIADES applies these methods
in mobility, healthcare, manufacturing, energy,
robotics, and Green Deal use cases, the same
principles could be extended to food systems,
where identifying risks such as contamination,
fraud, or supply-chain disruptions depends on
timely, high-quality data. By enabling federated
analytics and trusted cross-domain data sharing,
PLIADES provides a transferable framework for
proactive, Al-driven risk intelligence.

What are the main challenges in deploying Al
for resilient food systems?

The main barriers in deploying Al for resilience
in food systems (many of which are tackled in
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PLIADES) span technical, organisational, and
regulatory dimensions. Across its mobility,
healthcare, manufacturing, energy, robotics, and
Green Deal domains, PLIADES addresses data
fragmentation, lack of interoperability standards,
and trust deficits that limit cross-sector data use.
It develops semantic alignment methods, data
quality frameworks, explainable Al tools, and
governance models to ensure transparency and
sovereignty. These enablers, together with shared
infrastructures and capacity building for smaller
actors, are equally relevant to food systems, where
reliable, explainable, and ethically governed Al is
essential for safe and adaptive decision-making.

What does trustworthy Al look like in the
context of food safety?

In PLIADES, trustworthiness is achieved through
transparency,explainability,and continuoushuman
oversightacrossthe Alanddatalifecycle. The project
develops metadata-driven traceability, provenance
tracking, and explainable Al methods that make
automated insights auditable and interpretable
by end users. Every Al-assisted decision can be
linked to its data origin, validation status, and
confidence level, supporting accountability and
human-in-the-loop supervision. While applied
in mobility, healthcare, manufacturing, energy,
robotics, and Green Deal domains, these principles
can inspire trustworthy Al in food safety - where
clear reasoning, transparent data flows, and ethical
oversight are essential for building confidence
among regulators, producers, and consumers.

How can Al support cross-border coordination
and data sharing to enhance food system
resilience?

PLIADES advances a federated architecture of
interoperable European data spaces, where Al
enables collaboration without compromising
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data sovereignty or privacy. Through semantic
harmonisation, metadata registries, and trusted
governance frameworks, the project demonstrates
how Al can align standards and support shared
intelligence across borders and sectors. Applied
to food systems, such an approach could enable
coordinated responses to emerging risks by linking
regionaldata undercommonsemanticsandethical
rules. PLIADES' work across mobility, healthcare,
manufacturing, energy, robotics, and Green Deal
domains provides a reusable blueprint for resilient,
cross-border data ecosystems compliant with EU
data-space and Al policy priorities.

Looking ahead to 2035, what breakthrough
would you like to see in Al for resilient food
systems?

By 2035, the vision inspired by PLIADES is a
federated European Food Data Space where Al
continuously monitors, analyses and predicts
risks across the entire food-value chain. Data from
farms, processing plants, logistics, and regulators
would interconnect through trusted, interoperable
infrastructures guided by transparent governance
models. Such a system would enable real-time,
cross-border collaboration, where Al not only
detects emerging threats but anticipates them
through continuous learning and multi-sector
data integration. Building on the interoperability,
governance, and trust mechanisms developed
in PLIADES, this future ecosystem would make
resilience an inherent property of Europe’s food
systems.
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How can predictive Al technologies strengthen
resilience in food systems or related domains?

Predictive Al becomes far more reliable when
supported by a structured understanding of where
anomalies can emerge within an Al-powered
system. These anomalies can arise not only from
sensors or hardware, but also from the behaviour of
the Al model itself, for example, when it encounters
situations, it was not trained on or when its internal
representations drift over time. By examining the
full decision pipeline, from sensing to execution,
organisations can recognise early signs that the
system is diverging from expected behaviour.
Rather than assuming complete knowledge of
how anomalies emerge, modern approaches focus
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on detecting deviations fromm normal operational
patterns, even when those deviations have never
been observed before. This strengthens resilience
in domains such as robotics and can be transferred
to food systems, where early identification of
unexpected readings, equipment irregularities,
or process fluctuations is essential for safety and
continuity. Combining predictive models with
continuous monitoring of system behaviour helps
organisations anticipate risks sooner, reduce
uncertainty, and maintain stable and trustworthy
operations.
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What technical or organisational barriers
limit the deployment of predictive Al in food
systems or similar contexts?

Several factors limit the effective deployment of
predictive Al and anomaly detection in critical
systems. A key technical challenge isthat Al models
must not only interpret their environment but also
estimate the uncertainty within it. Building models
capable of recognising both expected signals
and uncertain or ambiguous situations requires
development methodologies that are more
complex than those used in traditional prediction
tasks. At the system level, the surrounding
framework must also be able to handle uncertainty:
the decision-making pipeline should integrate not
only the model's outputs but also information
about confidence levels or potential anomalies
arising from different components. When we
deal with robots we need to make sure that they
remain safe for the objects (including humans)
in their environment, even when parts of their
control have been trained using Al components.
This demands continuous monitoring, real-
time processing, and infrastructures able to
combine signals from sensing, interpretation, and
planning stages. Interoperability issues, such as
incompatible data formats or isolated software
modules, further limit the ability to form a unified
view of system behaviour. Organisational factors
also contribute: limited familiarity with Al-based
diagnostics, uncertainty about accountabilitywhen
automated alerts are raised, and reluctance to
modify established procedures can slow adoption.
Together, these barriers make it challenging to
build dependable, transparent predictive systems
capable of detecting and responding to anomalous
behaviour early.
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What are the key enablers and barriers for data
sharing in the food industry, and how can Al
help?

Sharing operational and monitoring data is
important for detecting anomalies early, as it
helps create a clearer picture of how a system
behaves across different stages of sensing,
interpretation, and decision-making. Ensuring the
safety of the decisions taken is paramount for the
trustworthiness of any system. However, several
factors limit this kind of sharing. Organisations may
be cautious about sharing internal system signals
due to privacy concerns, unclear responsibilities,
or uncertainty about how diagnostic information
will be used. Technical barriers also play a
role: incompatible formats, isolated tools, and
fragmented infrastructures prevent the integration
of data needed to understand unusual behaviour in
context. Al can support more secure collaboration
through privacy-preserving methods, shared
representations that protect sensitive details,
and automated checks that ensure data quality.
In addition, Al-on-the-edge and embodied
intelligence can reduce the need to share raw data
externally by enabling systems to analyse signals
locally and transmit only essential insights. These
capabilities help create reliable foundations for
early anomaly detection without compromising
confidentiality or operational security.

How do you approach explainability and trust
in Al systems used for risk prediction?

Building explainability and trust in Al systems
begins with making their internal behaviour
visible and interpretable. A practical approach is
to examine how signals evolve across the different
stages of an Al system, such as perception,
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interpretation, and decision-making, to identify
when the system starts to diverge from expected
behaviour. Highlighting these changes in clear,
human-readable  formats helps  operators
understand why a particular decision was made
and when an intervention may be necessary. Trust
is further supported through mechanisms that
allow experts to review alerts, validate the system's
reasoning, and adjust parameters when unusual
behaviour is detected. By combining transparent
monitoring with human oversight, Al systems used
for risk prediction can provide more dependable
and understandable outputs, even in complex
operational environments.

What considerations guide the design
of sustainable Al infrastructure in your
organisation or field?

Sustainable Al infrastructure prioritises efficiency,
stability, and long-term reliability. In robotics and
autonomous systems, this means designing

models that can monitor behaviour and
detect anomalies without requiring excessive
computational resources to guarantee safety.
Lightweight  architecture  reduces  energy

consumption and makes continuous operation
more feasible, especially in environments where
systems must run safely and reliably for extended
periods.Sustainability also involves creating models
that remain stable over time, limiting the need
for frequent retraining or manual adjustments.
It is equally important to develop interfaces
and model architectures that can be upgraded
directly, without extensive hardware changes or
major redesigns of the decision-making pipeline.
Standardised frameworks help support this by
enabling components to be updated, replaced,
or extended with minimal disruption. These
considerations are relevant to food systems as well,
where energy-efficient, easily maintainable, and
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dependable Al tools support resilient operations
and reduce the environmental footprint of data-
driven processes.

Looking ahead to 2035, what breakthrough
would you like to see in Al for resilient food
systems or cross-sector collaboration?

By 2035, a breakthrough would be the widespread
adoption of Al systems that not only monitor
their own behaviour continuously but also adapt
effectively to changes in their environment.
Beyond identifying irregularities future systems
should be able to update their internal models,
adjust parameters, and refine their responses
as conditions evolve, ideally without requiring
complete retraining or disruptive recertification
processes in critical sectors. Building on advances
in anomaly detection and system understanding,
next-generation Al should be able to:

detect unusual behaviour early and respond
safely,

adjust to changing environments while
maintaining dependable performance,

provide clear explanations when something
goes wrong, and

follow established standards for trustworthy
and transparent operation.

Such capabilities would allow robotic platforms,
food-processing equipment, and supply-chain
technologies to operate more reliably, even under
uncertainty. Achieving this vision will require
strong collaboration across research, industry, and
policy. Enhancing early anomaly detection and
coordinated response mechanisms is essential for
creating Al systems that society can depend on in
critical domains where safety for their environment
also needs to be guaranteed.
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Where can Al add the most value in food safety
decision-making?

Food safety decision making is a critical sector
for European citizens, where complexity and
diverse supply chains create a challenging task for
reliable tracking of food sources and a trustworthy
monitoring system for the different stakeholders
involved. Al as an enabler via the integration of
different trust based technologies, i.e., blockchain,
can not only accelerate automation of different
processes, but also increase trust and traceability
of the entire action chain.

In this respect, OASEES extends the blockchain
based paradigm of Decentralized Autonomous
Organizations (DAOs), where decision making is
governed bysmartcontracts,whicharetransparent
and controlled by its members, which can be both
humans and Al agents. This convergence creates
an interface for experts/regulators to approve or
override different Al based decisions, on zero-trust
policy. Al adoption may face obstacles based on
trust issues, therefore a systematic approach on
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traceability and auditing of decisions can truly
benefit such a critical sector as is food safety of
today.

How is Al helping detect and respond to
emerging risks in your sector?

Edge inference and data processing close to the
source can be a significantly beneficial factor in
different aspects of the food supply chain, as they
not only accelerate procedures but also preserve
the privacy and integrity of the data produced and
inferred.

In this respect, OASEES follows an edge-first
approach in its programmable framework,
adopting certain primitives of the compute-to-data
paradigm. The Al models produced are deployed
close to the site, with edge processing tailored for
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resource-constrained devices (e.g. swarms), which
can process data ad hoc, limiting cloud resource
usage to the bare minimum.

Fromm the perspective of food systems, the
proposed paradigms can be directly applied, since
the amount of generated data is vast, and it is
logical to constrain data processing close to the
source.

What are the main challenges in deploying Al
for resilient food systems?

A key challenge for Al deployment in food systems
is heterogeneity. The number of different casesand
their corresponding enablers varies significantly,
creating diverse requirements and limitations,
which makes it difficult to establish a holistic
approach.

This also creates challenges from a scaling
perspective, since scalability normally depends on
unified resource management, especially within
the cloud/edge continuum. Different cases scale
differently, and a horizontal approach - particularly
inaresilient food system - can generate a multitude
of challenges in building a fully functional
end-to-end lifecycle.

What does trustworthy Al look like in the
context of food safety?

For food safety, this translates into trusted Al
pipelineswhere data provenanceisverifiable across
the continuum, risk scores and recommendations
are traceable to models and data sources, and
regulators or quality managers can inspect DAO
records showing how alerts were handled, which
thresholds were changed, and who authorised
each step.

OASEES proposes a layered architecture with
segregation of security zones and data-minimising
designs, supporting compliance-friendly,
“explainable-by-design” Al.  Explainability and
humanoversightarerealisedviahuman-in-the-loop
mechanisms embedded in DAO workflows, where
domain experts validate data, vote on actions, and
review logs of robot or service behaviour.
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How can Al support cross-border coordination
and data sharing to enhance food system
resilience?

OASEES aligns with European initiatives for
sovereign, interoperable data spaces (e.g. Gaia-X,
IDSA) and demonstrates how federated operation
across multiple operators and jurisdictions can be
implemented.

In the food sector, this could underpin cross-border
early-warning networkswhere Almodelsrunlocally
on national infrastructures but share anonymised
features, risk indicators, or aggregated traces
through governed data spaces - aligning standards
while respecting local rules and commercial
sensitivities.

Furthermore, it enables participants to share
Al-ready data products under explicit policies while
retaining sovereignty.

Looking ahead to 2035, what breakthrough
would you like to see in Al for resilient food
systems?

A desirable 2035 breakthrough is a pan-European
“food-risk swarm continuum”. thousands of
interoperable swarms of sensors, robots, logistics
nodes, and analytical services, each operated by
different actors but orchestrated via common
SDKs, DAOs, and data-space rules.

Insuchasystem,edge Alwould continuously assess
contamination, fraud, and infrastructure risks;
service-mesh technologies would automatically
reconfigure flows and capacity; and DAO-based
governance would align incentives so that farmers,
processors, retailers, and authorities collaboratively
manage risk.

Rather than isolated pilots, this would be a living,
self-optimising network where every new sensor
or model instantly strengthens collective foresight,
and where transparency, accountability, and
human oversight are embedded by design.
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How can predictive Al technologies strengthen
resilience in food systems or related domains??

Predictive Al can strengthen food system
resilience by transforming digitally structured
food safety data into probabilistic risk intelligence.
When hazard analyses, process controls, and
supply parameters are encoded in interoperable
formats, such as those emerging from digital
HACCP systems, machine learning models can
detect precursor signals of contamination, forecast
hazard emergence, and quantify risk propagation
across product lines or supplier networks.

Methodsincluding multivariate anomaly detection,
time-series forecasting,and Bayesian inference can
predict contamination likelihood from deviations
in ingredient quality, equipment conditions, or
environmental monitoring signals. Similar to
infectious-disease forecasting and climate-risk
modelling, these approaches enable proactive
interventions rather than post-hoc containment.

Embedded  within  privacy-preserving and
explainable infrastructures, predictive Al
enables HACCP systems to evolve into adaptive,
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continuouslylearningriskcontrolsthatreduce recall
probability, enhance supply-chain robustness, and
strengthen public health protection.

What technical or organisational barriers
limit the deployment of predictive Al in food
systems or similar contexts?

The deployment of predictive Al in food systems
is primarily constrained by fragmented and
unstructured data architectures. Most food safety
information, including HACCP plans, monitoring
results, supplier data, and environmental records,
still exists as non-standard documents rather than
machine-interpretable datasets, limiting model
training and interoperability.

Technical infrastructure gaps persist in small
and mid-sized enterprises, where secure
cloud computing, sensor integration, and
privacy-preserving analytics are not uniformly

adopted.
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Organisational barriers further hinder deployment:
risk-averse cultures prioritise compliance over
innovation, and the absence of agreed data
standards complicates cross-company data
sharing needed for multi-party risk forecasting.

Lessons from health and environmental domains
show that predictive systems become viable only
when governance frameworks, explainability
requirements, and incentive structures are aligned
to support data interoperability, secure model
access, and human-centred oversight rather than
ad hoc digitalisation.

What are the key enablers and barriers for data
sharing in the food industry, and how can Al
help?

Data sharing across food systems is often limited
by concerns over commercial sensitivity, lack of
standardised data models, and uneven digital
maturity among actors. HACCP and supplier data,
for example, are still predominantly stored as
proprietary documents, making them difficult to
exchange without disclosing sensitive information.
Trust and interoperability therefore become
prerequisites for collaboration.

Predictive Al can enable new sharing models by
operating on securely federated data rather than
requiring centralised access. Privacy-preserving
techniques such as federated learning, differential
privacy, and secure multiparty computation make
it possible to train risk-forecasting models without
exposing confidential information.

When combined with standardised,
machine-interpretable data structures, such as
those emerging from digital HACCP systems, these
technologies create incentives for collaboration by
allowing companies to contribute to shared risk
intelligence while retaining control over their data.
Al thus becomes both a technical enabler and
a governance mechanism for multi-party food
safety resilience.
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How do you approach explainability and trust
in Al systems used for risk prediction?

Explainability and trust in predictive Al for food-risk
mManagement require models to support traceable
reasoning rather than opaque outputs. Because
food safety control decisions, such as those guided
by HACCP decision trees for critical control points
(CCPs), carry regulatory implications and directly
influence consumer protection, risk-forecasting
systems must demonstrate how a prediction
derives fromm underlying hazards, process
parameters, or supplier evidence.

Techniques such as feature attribution (e.g. SHAP
values), Bayesian reasoning, and rule-augmented
machine-learning can expose the contribution
of specific data sources to predicted risk levels.
Human oversight remains central: Al outputs
should be presented as decision support with
uncertainty estimates, auditable provenance, and
clear links to recommended control actions.

As demonstrated in other industries, interpretable
risk scores, transparent audit trails, and expert
validation build trust among regulators and
operators.InalignmentwithEU AlActrequirements,
trustworthy Al must pair technical transparency
with documented governance protocols, ensuring
that modelling reinforces (rather than replaces)
scientific judgement in food safety.

What considerations
of sustainable Al
organisation or field?

guide the design
infrastructure in your

Designing sustainable Al infrastructure for food risk
prediction requires balancing model performance
with computational efficiency and environmental
impact. In food systems, where risk models may
run continuously across distributed facilities,
lightweight architectures can outperform large
energy-intensive models by focusing on structured
domain data, such as standardized hazards, CCP
logic, or supplier risk attributes, rather than broad,
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unbounded learning. Model compression, edge
deployment for on-site processing, and selective
retraining strategies reduce cloud usage and
energy demand.

Sustainability also depends on governance:
transparent data standards help minimise
redundant computation, and privacy-preserving
methods (e.g., federated learning) reduce the need
to centralise large datasets, lowering storage and
transfer costs. Lessons from climate informatics
show that targeted, domain-specific models
consistently produce more stable and resource-
efficient predictions.

Applied tofood safety,sustainable Alinfrastructures
prioritise responsible scaling, domain-guided
modelling, and lifecycle monitoring of model
performance and compute, ensuring that
resilience gains do not create new environmental
burdens.

Looking ahead to 2035, what breakthrough
would you like to see in Al for resilient food
systems or cross-sector collaboration?

By 2035, a transformative breakthrough would
be the emergence of a global, privacy-preserving
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“Predictive Food Risk Commons” that unites
regulators, industry, laboratories, and public health
agencies through secure, explainable Al. Such an
infrastructure would allow models to continuously
learn from anonymised HACCP data, pathogen
genomics, climate signals, trade flows and supply-
chaindisruptions,enabling probabilisticforecasting
of contamination pathways and system stressors
without requiring any participant to relinquish data
ownership.

Federated learning, synthetic data, and causal Al
would support early detection of emerging hazards
and simulate how control interventions alter
risk trajectories, while domain-aware reasoning
systems could propose validated countermeasures
and quantify uncertainty. Integrated with the
EU Al Act, a food safety cormmon would embed
human-auditable risk logic, ethical stewardship,
interoperability standards, and energy-efficient
computation.

Success would mean food safety systems capable
of anticipating threats collaboratively, safeguarding
public health through shared foresight, and
strengthened by collective intelligence rather than
fragmented effort.
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Where can Al add the most value in food safety
decision-making?

Al adds the most value to food safety when
it integrates heterogeneous signals into early,
actionable decisions that prevent hazards before
they enter the food chain. This encompasses
weather, phenology, pest pressure, and soil/water
quality, as well as plant-level detection of diseases
that typically emerge in small, rapidly expanding
clusters. Because symptoms of key pathogens are
detectable far earlier than conventional laboratory
analyses (Dhaka et al., 2021), Al-powered tools,
such as smartphone-based detection developed
in projects like NextGenBioPest, dramatically
strengthen early warning capabilities.

Moreover, these plant-level insights become even
more powerful when integrated into system-level
decision workflows. For instance, in the Smart
Droplets project, they are fed into prescription
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maps, adaptive Direct Injection System (DIS)
spraying, and digital twin simulations (Zhang et
al.,, 2025) that reduce chemical loads, drift, and
residue-related risks while exploring “what-if”
strategies for choosing the safest intervention
paths.

How is Al helping detect and respond to
emerging risks in your sector?

Al is transforming the detection of emerging risks
in agriculture by enabling continuous, plant-level
surveillance and rapid diagnosis of early symptoms
that would otherwise go unnoticed. Many fungal
pathogens emerge in small, localised outbreaks
that expand rapidly, and their early signs are often
difficult to detect using conventional methods.
Al-powered vision systems, whether mounted
on UAVs, retrofit tractors, or embedded in
smartphones, now provide near—real-time disease
detection.
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Al also plays a central role in responding to these
risks by linking detection outputs to dynamic,
operations-level decisions. In Smart Droplets, for
instance, these visual insights are fed directly into
Digital Farm Twins, where layers of canopy health,
droplet deposition, and soil moisture (@among
others) can be integrated to simulate how risks
evolve in space and time. By forecasting chemical
drift under changing environmental conditions,
digital twins along with multimodal Al can serve
as predictive tools that alert stakehodlers to risks
affecting water bodies, pollinator habitats, or
adjacent food-producing areas before incidents
OCCUr.

What are the main challenges in deploying Al
for resilient food systems?

The primary challenges in deploying Al for resilient
food systems stem from issues of data quality,
availability, and representativeness. Most actors
still face limited labelled datasets, uneven data
governance, and highly heterogeneous field
conditions. Models trained on one crop, region,
or season often fail in another due to distribution
shifts, label noise, and rapidly changing pathogen
ecologies. Smartphone-based systems or
precision-spraying workflows in Smart Droplets,
therefore, require extensive field trials across
variable canopies, climates,and imaging conditions
to ensure reliability.

A second major challenge lies in building
interoperable, trustworthy, and continuously
updated data ecosystems that allow Al models to
remain robust over time. The Common European
Agricultural Data Space (CEADS) aims precisely
to address today's fragmentation by enabling
secure sharing of farm, industry, and public data
with harmonised connectors, vocabularies, and
governance, prerequisites for training models that
generalise across borders and seasons (Stefanidou
et al., 2025).
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What does trustworthy Al look like in the
context of food safety?

Trustworthy Al in food safety requires systems
that are transparent, auditable, and scientifically
interpretable throughout their entire lifecycle.
Under the EU Al Act , high-risk agricultural
applications, such as automated disease detection
or adaptive spraying, must demonstrate rigorous
risk management, traceability and human
supervision while maintaining auditable data
processing and defining clear human-in-the-loop
checkpoints, particularly when Al decisions may
affect chemical applications.

Equally essential is explainability; Al models must
reveal why they make specific recommendations,
in ways that align with biological reality and can be
inspected by farmers, cooperatives, and regulators.
Techniques such as Grad-CAM (Selvaraju et al.,
2016) allow computer-vision systems in Smart
Droplets or NextGenBioPest to highlight the
specific canopy regions, lesions, or grape clusters
that triggered a classification or a spraying
adjustment.

How can Al support cross-border coordination
and data sharing to enhance food system
resilience?

Al can enhance cross-border coordination by
promoting the agricultural sector toward shared
data standards and infrastructures that facilitate
the seamless flow of information. As Al systems for
disease detection, precision spraying, and digital-
twin modelling become more widespread, they
expose the need for accelerating the development
andadoptionofthe Common European Agricultural
Data Space (CEADS), which is expected to provide
a secure, interoperable backbone for exchanging
agronomic, environmental, and regulatory data
across Member States.
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CEADS' governance frameworks ensure that
heterogeneous Al systems, from smartphone
disease detectors in NextGenBioPest to tractor-
mounted computer-vision systems in  Smart
Droplets, can operate beyond local silos while
preserving traceability, privacy, and data
protection. Moreover, imagery and sensor data
captured by drones, smartphones, and spraying
platforms can be ingested into CEADS-compatible
Farm Management Information Systems (FMIS)
(Fountas et al., 2015), enriching digital twins with
cross-regional context on disease pressure, canopy
structure, spray deposition patterns, and soil
moisture.

Looking ahead to 2035, what breakthrough
would you like to see in Al for resilient food
systems?

By 2035, a breakthrough would be the deployment
of multimodal digital twins that continuously
ingest heterogeneous data streams (e.g. field

sensors, UAV imagery, hyperspectral cameras,
soil and water probes, omics assays, and pesticide
residue analytics) to infer the causal links between
agronomic practices and food safety, biodiversity,
and yield outcomes in the long term. Unlike task-
specific models, these multimodal Al systems in
the context of Agriculture 5.0 (Fountas et al., 2024)
and foundation models (Espejo-Garcia et al.,2025)
would align spatial, visual, temporal, and biological
modalities through shared embeddings, enabling
robust cross-domain reasoning. This way, digital
twinswouldactascognitiveecosystems,simulating
alternative Integrated Pest Management (IPM)
strategies while dynamically quantifying trade-
offs among efficacy, environmental persistence,
carbon footprint, and ecological impact. Moreover,
they would generate auditable, explainable reports
that conform to the EU Al Act, ensuring that every
prescription or simulation is traceable, justifiable,
and reproducible.
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How can predictive Al technologies strengthen
resilience in food systems or related domains?

Predictive Al enables smarter decisions in farming
by forecasting crop needs - such as fertilisation,
irrigation, and plant protection - based on soil,
weather,andsatellitedata. Thisreducesinput waste,
improves yield stability, and lowers environmental
impact. It also enhances food system resilience
by reducing reliance on non-renewable resources
and minimizing exposure to climate variability.

Al can forecast pest outbreaks or disease risks
from weather and historical patterns, stabilizing
production and limiting price shocks. To be
effective, all such models rely on timely, site-
specific field data. New sensor technologies
under development, such as automated in-soil
lab-on-a-chip systems, can address this data gap
by providing continuous, high-quality nutrient
measurements, enabling real-time decisions and
better Al model performance.
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What technical or organisational barriers
limit the deployment of predictive Al in food
systems or similar contexts?

A major barrier is the lack of suitable sensors
for key factors such as plant-available nutrients,
soil biology, and plant health. Manual sampling
and laboratory testing are labour-intensive and
infrequent, resulting in sparse datasets with limited
resolution. Harsh outdoor conditions often cause
data gaps and equipment failures.

Additionally, there is poor interoperability across
fragmented IT systems, each using different
formats and classifications. The complexity of
biological systems - with non-linear, time-delayed,
and adaptive responses - makes modelling
challenging, especially with limited data. Al tools
also require processing power and connectivity,

s
.
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which are often unavailable in rural areas. Finally,
digital systems can be costly, and the value they
generate may not directly benefit the data provider,
limiting adoption.

What are the key enablers and barriers for data
sharing in the food industry, and how can Al
help?

Data sharing is hindered by technical, economic,
and organisational barriers. Heterogeneous data
models and formats across IT systems othen result
in loss of meaning during transfer. Large players
benefit from vendor lock-in and lack incentive
to open up. Farm-level data are costly to collect
and may benefit downstream actors more than
farmers, discouraging participation. Al could play
a role by translating between data formats and
lowering integration costs, but only if underlying
models are accessible. Privacy regulations such
as the GDPR also restrict the use and transfer of
personally identifiable data. A trusted governing
body is required to harmonise data standards
and ensure fair, secure use across the value chain,
balancing costs and benefits to all stakeholders.

How do you approach explainability and trust
in Al systems used for risk prediction?

Transparency in Al models is crucial for building
user trust, particularly in agriculture where
decisions directly affect livelihoods. A key strategy
is using verifiable data sources. At Kiel University,
we are developing a buried lab-on-a-chip system
that generates time-series data on plant-available
nutrients, enabling Al models to be trained on
trustworthy ground-truth data. Beyond data
quality, explainability also depends on model
design and communication. Models should
include mechanisms to visualise trends, identify
outliers, and demonstrate how input changes
affect outputs. Highlighting year-on-year trends
or comparing sensor locations can help users
interpret the system and foster confidence in
decision support tools - especially when users
maintain oversight of the outcomes.
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What considerations guide the design
of sustainable Al infrastructure in your
organisation or field?

Sustainability in  digital agriculture involves

balancing functionality, energy use, and long-
term accessibility. Al models should be efficient
and tailored to their operational environment. In
the field, limited power and connectivity make
lightweight models and edge computing critical.
At Kiel University, we design sensor platforms
to be low-maintenance, buried beneath the
surface, and compatible with field machinery. Our
infrastructure choices also consider the long-term
total cost of ownership. On the software side, we
prioritise interpretable models and visual tools that
help users understand outcomes. Sustainability
also includes data ethics and openness: reusable
models and open APIs can help avoid redundant
development and promote broader system
integration.

Looking ahead to 2035, what breakthrough
would you like to see in Al for resilient food
systems or cross-sector collaboration?

By 2035, we envision widespread use of real-time
sensor networks combined with remote sensing
and Al to deliver precision recommendations
tailored to specific crops, soils, and climates.
Affordable, autonomous sensor technologies will
make it economically viable to collect the dense,
high-quality data Al models require. Al-based
translation systems will improve interoperability
across platforms, actors, and borders. We also
anticipate more public infrastructure, such as
government-backed cloud services, to reduce
dependency on private providers and ensure
compliance with data protection regulations.
Ideally, breakthroughs in explainable Al will make
complex models understandable to all users,
bridging the gap between decision support and
farmer intuition in an increasingly digital food
system.
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How can predictive Al technologies strengthen
resilience in food systems or related domains?

Optical sensing technologies rapidly penetrating
into the Precision Agriculture (PA) domain, offering
a wealth of new types of data, that were not
previously available to farmers, agronomists and
researchers. Predictive Al technologies are now
envisioned (and in some cases already applied)
to interpret and translate these optical sensing
data into simple and perceivable parameters for
immediate and reliable monitoring of the crops
and the field.

The multi-parametric sensing and risk evaluation
processes may include early detection of pest
threats, adjustment of fertilisation in terms of
macro- or micro-nutrients, or monitoring of abiotic
stresses of plants and trees. Such multi-parametric
data analyses powered by computational and
machine learning tools, shift Agriculture from
the traditional empirical mode into the Precision
“Al-powered decision support and sensor fusion”
mode, saving natural and cultivation resources,
also reducing major cultivation risks, which can
downgrade both the quality and quantity of crop
yield.
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The principal idea will be to use optical sensing
technologies together with Predictive Al models
not for formulating crucial decisions, but for
assisting the end users in reducing the uncertainty
of the decisions taken.

What technical or organisational barriers
limit the deployment of predictive Al in food
systems or similar contexts?

A major issue hurdling the wider deployment of
Predictive Al in optical sensing subsystems and
methods employed in the modern agricultural
sector is the lack of standardisation covering
both hardware and data management systems.
This lack of standardisation is related to the
rapid penetration of several new optical sensing
technologies into the Precision Agriculture field,
alsowith the difficulty of translating and correlating
crucial agricultural parameters (i.e. pesticide
residue levels) with specific optical quantities.

The fusion of data obtained from different optical
sensing platforms and protocols into unified risk

s
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prediction toolkits using Prediction Al models still
remains a challenge, since the type and particular
characteristics (i.e. temporal distribution, accuracy,
etc.) of the data available, may lead to conclusions
that are predominantly based on the interpretation
method, yet based less on the measurements
obtained on the physical (sensor) layer.

What are the key enablers and barriers for data
sharing in the food industry, and how can Al
help?

Optical sensing technologies, especially those
based on fibre-optic sensors, provide point
measurements in agricultural fields, requiring
deployment over a grid for accumulating
substantial sampling for a single user. It is obvious
that the monitoring of a wider agricultural area,
covering for instance a region assigned as a
Protected Designation of Origin, requires an
extended network of sensing points, which may be
distributed along different users; there data sharing
is inevitable for creating necessary databases.

Privacy-preserving Al, including blockchain
protocols, can support the sharing of specific types
ofdatabetweenendusersand networkmoderators
(e cooperatives), without compromising privacy
rules or disclosing sensitive cultivation practices.
The same Privacy-preserving Al can be employed
for diluting and integrating the data available into
a greater model of higher validity, being broadly
available so interested end users can access it to
cross-check the measurements of their sensing
points and consolidate results.

How do you approach explainability and trust
in Al systems used for risk prediction?

A catalyst that will boost the adoption of optical
sensing technologies into the Precision Agriculture
by a large number of farmers and agronomists will
be the establishment of trust and transparency
across both the optical layer and the Al signal
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processing technologies used. The optimum way
to enhance trust of among end users of these
emerging technologies is through their association
with and validation against realistic, success cases.

Therefore, these new hardware and Al analysis
technologies should be thoroughly validated in
real field cultivation cases, involving a human-
in-the-loop mode, and showcasing tangible,
measurable benefits for the main stakeholders.
The credibility of those test cases and the relevant
risk assessment performed using Al models may
be undertaken by independent organisations, for
example, international research centres or large
scale cooperatives, while involving domain experts
with sound knowledge in photonics, Al and
agronomy.

Agricultural resources (i.e. equipment, fertilisers
or pesticides) and other high tech (i.e. photonic
components manufacturers) may also be involved
as beneficiary players while populating a broader
value chain.

What considerations guide the design
of sustainable Al infrastructure in your
organisation or field?

Precision Agriculture deploys along three main
sustainability priorities: efficient use of resources,
improvement of final agricultural product quality
for consumers, and cultivation with minimal
environmental impact. These priorities can be
furtherimplemented into the framework of circular
economy, tailored to each crop, area, agricultural
practices and business model.

Optical sensing technologies can readily serve
all these three sustainability priorities, however,
the fusion of the optical sensing data into a
sustainability-oriented cultivation and business
model is not yet straightforward. The key challenge
relates to the profit margin generated for the
farmer either operatingin a personal or cooperative
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business model,  without  compromising
sustainability priorities, and without significantly
disturbing other parts of the value chain (i.e. final
consumer or agrochemical companies). Thus, a
more generalised profit-sustainability Al model
should be implemented, seamlessly fitting to
the hardware technologies and business models
available.

Looking ahead to 2035, what breakthrough
would you like to see in Al for resilient food
systems or cross-sector collaboration?

Precision Agriculture comes to change the way we
cultivate, produce, certify, transport and sell crops.
Sensing technologies, including those of optical
sensing, are cornerstone components into PA, with
the sensing data obtained dominating most parts
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of the extended and cross-sectorial value chain of
Agro-food. Future Al models should operate for
generating win-win opportunities for all players
involved in this value-chain, especially for farmers
that are exposed to frequent and unpredictable
cultivation and financial risks.

A generalised Al model should cover the whole
ecosystem of Agrofood sector, bringing closer all
players involved, while providing transparency of
operations and transactions, allowing trustworthy
tracking of the products from Farm to Fork. Such a
comprehensive Al model could secure crop quality,
ensurefair profitforall playerinvolved, sustainability
practices and timely availability of the products to
the markets, while avoiding disruptions, which can
lead to scarcity of products, and price volatility.
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